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I. Introduction 

A large and growing literature is concerned with the theory, 

estimation, and applications of cointegrating vectors and 

associated error correction models. A cointegrated system is a set 

of time series that individually follow difference-stationary 

linear processes, but one or more linear combinations of the series 

do not require differencing to appear stationary. The stationary 

linear combinations indicate stable long-run relationships. Engle 

and Granger (1987) demonstrate the correspondence between 

cointegrated time series and error correction models: generating 

processes for cointegrated systems have error correction 

representations, and error correction models generate cointegrated 

series. 

Nearly all of the work in the unit root literature thus far is 

applicable only to series generated by a linear process. The 

exceptions are two papers by Granger and Hallman (1988, 1990) . The 
first of these considers properties of nonlinearly transformed 

integrated series and the effect of such transformations on unit 

root tests. The second introduces the concept of "attractor sets, 

a nonlinear generalization of cointegration. Roughly speaking, if 

x, is an n-dimensional time series with all components having long 

memory (defined below), then a subset A of Rn is an attractor set 

if z,, the Euclidean distance from x, to A, is a short-memory 

process with bounded variance. Linear cointegration is a special 

case in which A is a hyperplane, and the components {xi , )  of x, are 

not only long memory but difference stationary as well. 
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This paper can be regarded as falling between the studies 

described above, focusing on series that are (linearly) 

cointegrated only after they are individually nonlinearly 

transformed. Such series may be thought of as having an attractor 

that is the kernel of an additively separable function of 

X, = ( xltt x2,, ... ) ;  that is, 

A =  { x :  f(x) = 0 )  

where 

but this is not always true. Nonlinear cointegration is more 

general than the notion of an attractor set and may be more useful 

to economists as well. The relationship between attractor sets and 

nonlinear cointegration is explored in section 11. 

If two series are cointegrated and the second series is also 

cointegrated with a third, then it is well known that the first and 

third series are also cointegrated. Granger and Hallman (1988) 

show that an integrated series is not cointegrated with a nonaffine 

transformation of itself. From this it follows that if f(x,) and 

g(y,) are cointegrated, f (x,) and h(y,) are not, making it important 

to get the transformations right. By allowing for nonparametric 

transformation of the series as part of the estimation procedure, 

the two algorithms outlined in section I11 increase the odds of 

finding long-run relationships if they do exist. 

Section IV discusses testing for cointegration among 

transformed series and is followed by some illustrative examples in 

the fifth section. Section VI concludes. 
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11. Attractor Sets and Nonlinear Cointegration 

Start with some definitions from Granger and Hallman .(1990). 

Let the information set I, be defined as I, = { x,-~, Qt-j : j = 0, 1, 

2, . . . } , where Q, is a vector of other explanatory variables. 

Then the series x, is said to be short memory in distribution (SMD) 

with respect to I, if 

as h - - for all appropriate sets A and B. If equation (1) does 

not hold, x, is called long memory in distribution (LMD) . Denoting 
the conditional expectation as 

x, is said to be short memory in mean (SMM) if limf,,, = F, where 
h-- 

F is a random variable with a distribution that does not depend on 

I,. If f,,, depends on I, for all h, then x, is long memory in mean 

(m) 
The univariate series x, has a point attractor m if x, is SMM 

with limf,,, = m and the forecast error e,,, = (x,+, - m) has bounded 
h-- 

variance as h - a. Similarly, the n-dimensional series x, is said 

to have an attractor A E R n  if z , ,  the signed Euclidean distance 

from x, to the nearest point in A, is SMM and has finite variance. 

It is obvious that x, has the point attractor m = (m,,, m,,, . . . , mnt ) 

if its components {xi,) are each SMM with mean mi,. Two interesting 

cases analogous to cointegration arise when the components {xi,) of 
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x, are LMM and either (i) x, has an attractor or (ii) a nontrivial 

function f : R n  + R I  exists such that f (x,) is SMM. This second 

case will be called nonlinear cointegration, and the function f 

will be referred to as a cointegrating function. 

If x, is LMM with an attractor, it is also nonlinearly 

cointegrated, with the Euclidean distance function as one 

cointegrating function (there may be others). However, the notion 

of an attractor may be overly restrictive, since it is possible for 

series to be nonlinearly cointegrated in an economically 

interesting way without having an attractor. To see in general how 

this can happen, suppose f (x,) is a cointegrating function with 

mean zero and kernel A; that is, 

A = { x : f(x) = 0 ) .  

If < is the closest point in A to x,, then by the Mean Value 

Theorem there exists a real number q,E [0,11 and a point 

A x,* = rltxt + (l-tlt)xt such that 

f (x,) = f (xp) + Vf (x:) '(x, - xp) 
= Vf (x;) *(x, - xp) I 

since f (xp) = 0. Let 8, be the angle between Vf (xi) and (x, - xp) , 

and let z, be the signed Euclidean distance from x, to xp. Then 

implying that 
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If the denominator of equation (2) is bounded away from zero (that 

is, 3 6 > 0 s. t. Icos0,l ((Vf (x,') (1 > 6 ) , then the finite variance 

property of f (x,) will carry through to 2,. Given the bound, lz,( 

may be thought of as the product of two series, at least one of 

which (f [x,]) is SMM. Granger and Hallman (1988) show that for 

linear series, the product of an I(0) series with either another 

I(0) series or an I(1) series is sMM.' This suggests that in many 

cases the right side of equation (2) will also be SMM, so that the 

kernel of f will be an attractor. However, if the denominator of 

equation (2) tends to zero as t gets large, the finite variance 

property for z, required by the definition of an attractor may not 

hold. 

Bounding Icose,( away from zero seems reasonable enough, since 

it is zero only if Vf evaluated at x,* is perpendicular to Vf 

evaluated at the (nearby) point x:. For economically interesting 

functions, this seems unlikely to happen. For example, if f is 

additively separable of the form 

'~ctuall~, they show that the product of an I(0) and a random 
walk is SMM, but since an 1(1) series can always be written as the 
sum of a pure random walk and an I(0) series, the result follows. 
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f (x) = @, (x,) + $2 ( ~ 2 )  + + @Xn (Xn) 1 

then the gradient of f at xi can become perpendicular to the 

gradient at x: only if some of the slopes of the {Gi  ) change sign. 

Requiring monotonicity of the { @ i )  is enough to prevent this. 

However, going further and also bounding IIVf(x:) 11 away from zero is 

quite restrictive. For example, the log of the U.S. M2 money 

supply follows an integrated process with positive drift and is 

cointegrated with the log of nominal GNP. The cointegrating vector 

is (1,-l), so that the log of M2 velocity is stationary around its 

mean of 0.50077 (= log[l. 651) . But while there is an attractor for 
the logs of money and income, there is no attractor for their 

levels. Define f by 

f (Y,,M,) = log (Y,) - log(M,) - .50077. 

The candidate attractor set is the kernel of f in Y-M space: 

A = { (M,Y) : Y - 1.65M= 0 ). 

The linear trend in log(M,) translates into an exponential trend in 

the levels of M,, Y,, so that the gradient 

is asymptotically driven to (0,O). If log velocity has a constant 

variance, the variance of the Euclidean distance from (M,, Y,) to the 

line Y = 1.65M grows like eZt. A is not an attractor for M, and Y,, 
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despite the fact that they are nonlinearly cointegrated. 

The point of this example is that the existence of an 

attractor between two or more series is not robust even to 

invertible transformations of the individual series. This is not 

true for nonlinear cointegration. If x, and y, are nonlinearly 

cointegrated, then so too are g(x,) and h(y,), if g and h can be 

inverted. 

111. Estimation 

Cointegrating transformations are not generally unique. 

Granger and Hallman (1990) show that if x,, y, are cointegrated, 

g(x,) and g(y,) are also cointegrated if either (i) g is homogenous 

or (ii) the series are scaled so that the cointegrating vector is 

(11-1) Absent further structure, estimating a pair of 

cointegrating transformations for x,, y, is not a well-defined 

optimization problem. 

An optimization problem that can be solved nonparametrically 

is finding the transformations @ ( .  ) , 8(- ) that maximize the sample 

correlation of @I (x,) and 8 (y,) . Since the asymptotic correlation 

between cointegrated series is one, one can hope that the 

correlation-maximizing transformations will also cointegrate. If 

the llequilibrium error" 8 (y,) - @I(x,) is thought to be stationary as 

well as SMM, the maximization can be carried out subject to the 

restriction that the variance of the estimated residual is 

constant. There is no guarantee that either of these approaches 
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will always discover a pair of cointegrating transformations if 

they exist, but applying the methods at least provides a start. 

Alternating Conditional Expectation (ACE) is an algorithm 

proposed by Breiman and Friedman (1985) to find transformations 

(8,@l,@2,.. . ) for a set of variables (y,x,,x . x )  that 

n 

maximize the correlation between 8 (y) and x@i (xi) . This is 
i = L  

equivalent to maximizing the R~ from a regression of 8(y) on 

(xl) , . . . , @,, (xn) , or minimizing 

The steps in the ACE algorithm are as follows: 

(ii) Iterate until e2 . . ,@,) fails to decrease: 

(a) Iterate until e2(8 ,el . . ,en) fails to decrease: 

F o r k =  1 to n : Set @,+E (8(y) -x@i(xi)) I x,; 
i *k I 

End inner iteration loop; 
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Set 

End outer iteration loop. 

Upon completion of the algorithm, the transformations 

0 ,@,, . . . ,cpn minimize equation (3) . 
Tibshirani's (1988) additivity and variance stabilization 

(AVAS) algorithm is a modification of ACE that chooses 0 (y) so as 

n 

to achieve a stable variance for the residual e, = 0 (y,) - x@i (xi,) . 
i =l 

At each iteration the variance function 

V(U) = var 0 (y) ( C@i (xi) = U  I i =l 1 
is used to compute the variance-stabilizing transformation 

0(y) for the current iteration is then computed as 0(y) +g[0(y) ] 

fromthe previous iteration, standardized to mean zero and variance 

one. For the examples in section V with trending economic times 

series, AVAS yields more sensible transformations than does ACE. 

Having estimated the transformations {@lr@21.. . , it may be 
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desirable to obtain fitted values for y, rather than its 

transformation. This can be done either by finding 

or by simply inverting 0(y) if it is monotone. 

Of course, the conditional expectations appearing in equations 

(3) and (4) are not usually known and have to be estimated. 

Breiman and Friedman suggest using data smooths in their place. 

Any one of several scatterplot smoothers can be used, including 

splines, nearest neighbor, and regression smooths. (See Silverman 

[I9851 and his discussants for a survey on the use of splines for 

scatterplot smoothing, and Cleveland [I9791 for his lowess 

procedure. ) In AVAS, the variance function v(u) is obtained by 

smoothing the logs of the squared residuals {r,) against the fitted 

values C mi (xi,) and exponentiating. See Tibshirani (1988) for I 
details. 

In the ACE routines used for this paper, both fixed and 

variable window regression smooths are employed. A fixed window 

smooth of size k computes E (y I x ) as follows: 

(i) Sort the observations by x value. 

(ii) Define the window Wn as the set of all observations 

{xjtyj) such that I j -n 1 I k t  so that the minimum window size is 

k + 1. 
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(iii) E (y, I x) is the fitted value of y, from a linear 

regression of y on a constant and x, using only the 

observations in the window W,. 

(iv) Repeat steps (ii) and (iii) for each individual 

observation y, in y. 

(v) For technical reasons detailed in Breiman and Friedman, 

the data smooths must always have a zero mean, so the sample 

mean of the computed E (y I x) is subtracted away before the 
observations are sorted back into their original order. 

If k + 1 = TI the sample size, the smooth is just the linear 

regression y = a + px and the returned values are the demeaned 

fitted values { - . At the other extreme, k = 0 will return y 

minus its mean, a perfect fit. In between, larger values of k 

trade more smoothness for less ability to trace discontinuities and 

sharp changes in the slope of y I x. The effect of reducing the 

window size is similar to what happens in a linear regression as 

more variables are allowed to enter. 

The smoother used in Breiman and Friedman's ACE implementation 

is the variable window llsupersmootherll of Friedman and Stuetzle 

(1982). It differs from the fixed window smoother by making 

several passes with different window sizes and then choosing one of 

these for each observation based on a local cross-validation 

measure. When there is substantial autocorrelation among the 

prediction errors of the sorted data, the supersmoother tends to 
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choose window sizes that are too small, so that a plot of the 

smoothed data may still appear somewhat jagged. Experience so far 

indicates that this effect is mitigated by a high signal-to-noise 

ratio, as when the series are highly correlated after very smooth 

transformations. Nonlinear cointegration is expected to be such a 

case, and the transformations of economic series found by the 

supersmoother in section V appear acceptably smooth. Nonetheless, 

both fixed and variable window smooths are employed in the ACE 

regressions given in sections IV and V to explore the effects of 

changing window sizes. Only a variable window smooth was available 

in the AVAS implementation. 

Breiman and Friedman prove that for a stationary, ergodic 

process, ACE converges to the optimal transformations if the 

smooths used are (i) uniformly bounded as T -, a, (ii) linear, and 

(iii) mean-squared consistent. Marhoul and Owen (1984) show 

regression smooths to be mean-squared consistent under conditions 

that are not satisfied by integrated time series. No one has yet 

derived conditions under which ACE and AVAS are asymptotically 

guaranteed to find cointegrating transformations if they exist. 

The approach taken here is to use the algorithms to find candidate 

transformations and then test for cointegration as outlined in the 

next section. 

IV. Testing 

If x, and y, are LMM series with cointegrating transformations 

f (x,) and g(y,), then z, = g(y,) - f (x,) is SMM. Evidence that f (x,) 
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and g(y,) are LMM while z, is not is one way to test for nonlinear 

cointegration. Granger and Hallman (1988) propose using both the 

Augmented Dickey-Fuller (ADF) test and a rank version of the ADF 

called RADF to test the LMM property in a univariate series. 

The ADF statistic for testing the unit root hypothesis is the 

t-statistic for a in the regression 

If p = 0, no lags of Az, appear in equation (5). The resulting 

statistic is then referred to as the Dickey-Fuller (DF) statistic. 

A one-sided test of the hypothesis of a unit root in z, is rejected 

if the statistic falls below a critical value. If z, has a nonzero 

mean, either it is subtracted off before performing the test, or a 

constant is included in the regression. If z, is a residual from 

ACE or from a regression including a constant term, it has mean 

zero by construction. 

To construct the RADF statistic, let r, = rank(z,); that is, 

r, is one if z, is the largest of the z ) ,  or two if z, is the 

second largest of the {z,), and so on. Replace the {z,) in equation 

(5) by their ranks and then compute the RADF as the t-statistic for 

a just as before. By construction, the RADF and RDF (rank 

counterpart of the DF) statistics are invariant to monotone 

transformations of z,. Granger and Hallman (1988) show that this 

is a considerable advantage in that the usual DF and ADF tests 

perform badly when z, is a nonlinear transformation of an 
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integrated series with a linear generating process. 

Use of the ADF as a test for linear cointegration was first 

suggested by Engle and Granger (1987), and its distribution has 

been studied by Phillips (1987), Engle and Yoo (1986), and Yoo 

(1987). Engle and Yoo provide tables of critical values for the 

test. These depend on both the number of observations in the 

sample and the number of parameters estimated in the cointegrating 

regression.* This presents a problem because ACE and AVAS do not 

estimate parameters. However, shrinking window sizes in ACE is 

much like allowing for more parameters in a regression. What is 

needed is an indication of the effects of changing window sizes on 

the distribution of ADF and RADF statistics constructed from ACE 

and AVAS residuals. 

A simple Monte Carlo experiment was conducted using 300 

repetitions of the following: 

(i) Generate u and e as vectors of 100 i.i.d. N(0,l) random 

variables, 

t t 

(ii) Form summations xt = x u j ,  et = x e j I  and 
j =I j =I 

(iii) Form yt by 

(a) Yt = Etr 

1 
(h) yt = ?xt + E ~ ,  and 

See table 3 (panel b) for percentiles of the RADF as a test 
for linear cointegration. 
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(c) y, = 3x, + E , .  

If the series were stationary, (a), (b) , and (c) would 

correspond to R' values of 0, 0.1, and 0.9, respectively. In 

fact, y, and x, are correlated random walks that are not 

cointegrated. 

(iv) The ACE algorithm was applied to the series with various 

fixed window sizes, as were both ACE and AVAS algorithms using 

the variable window size smoother. All transformations were 

restricted to be monotone. After forming the residual series 

z, for each case, the ADF and RADF statistics were computed 

with four lags of Az, appearing on the right side of equation 

Results of the simulations are summarized in tables 1 and 2, 

which show the percentiles of the ADF and RADF distributions 

generated by the experiment. As in Engle and Yoo, the minus signs 

are omitted for simplicity. For comparison, table 3 shows the 

distributions of the ADF and RADF statistics using residuals from 

ordinary least squares (OLS) regressions of a pure random walk on 

a constant and one, two, three, or four independent random walks. 

Again, four lags of Az, were used in the ADF regression. This 

table is based on 5,000 replications of each test. 

Several patterns are evident in the tables. From the fixed 

window entries, it is apparent that both the ADF and RADF 

distributions shift to the right with increasing window size and 
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increasing p .  The RADF results for the variable window ACE and 

AVAS appear stable across the three P values, as do the ADF results 

for AVAS. The ADF distribution for the variable window ACE shifts 

right as p increases. 
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Table 1 ADF Percentiles 

Method Window 5 % 10% 20% 50% 80% 90% 95% 

ACE 9 1.97 2.17 2.40 3.17 3.66 4.08 4.35 

ACE 14 1.67 1.91 2.26 2.96 3.58 3.98 4.32 
ACE 19 1.53 1.74 2.11 2.81 3.49 3.79 4.20 
ACE 24 1.33 1.63 1.99 2.66 3.33 3.77 4.15 
ACE 2 9 1.18 1.49 1.90 2.55 3.37 3.72 4.11 
ACE 3 4 0.91 1.37 1.77 2.53 3.30 3.67 3.88 
ACE 3 9 0.89 1.35 1.74 2.48 3.18 3.53 3.88 
ACE 44 0.92 1.27 1.72 2.42 3.17 3.52 3.77 
ACE 4 9 0.60 1.19 1.63 2.36 3.07 3.49 3.72 
ACE Variable 1.01 1.36 1.81 2.55 3.43 3.95 4.45 
AVAS Variable 0.84 1.35 1.76 2.45 3.16 3.47 3.77 

(b) ,3 = 0.333 

ACE 9 1.82 2.11 2.38 3.04 3.73 4.09 4.24 
ACE 14 1.59 1.97 2.20 2.85 3.50 3.83 4.16 
ACE 19 1.42 1.78 2.11 2.73 3.38 3.75 4.06 
ACE 2 4 1.35 1.67 1.95 2.59 3.25 3.62 3.99 
ACE 2 9 1.24 1.58 1.86 2.54 3.20 3.47 3.85 
ACE 34 0.97 1.42 1.85 2.46 3.14 3.45 3.71 
ACE 3 9 1.05 1.37 1.76 2.38 3.08 3.40 3.62 
ACE 44 0.88 1.29 1.69 2.36 3.02 3.39 3.60 
ACE 49 0.80 1.28 1.66 2.26 3.02 3.31 3.54 
ACE Variable 1.18 1.51 1.90 2.67 3.51 3.92 4.45 
AVAS Variable 0.91 1.31 1.75 2.46 3.11 3.47 3.82 

(c) 8 = 3 

ACE 9 1.26 1.59 1.95 2.53 3.21 3.54 3.78 
ACE 14 1.12 1.53 1.78 2.42 3.11 3.45 3.76 
ACE 19 1.00 1.40 1.71 2.35 3.05 3.36 3.59 
ACE 2 4 1.02 1.29 1.62 2.29 2.94 3.31 3.53 
ACE 2 9 0.78 1.19 1.58 2.22 2.89 3.31 3.46 
ACE 3 4 0.81 1.12 1.51 2.20 2.86 3.27 3.44 
ACE 3 9 0.75 1.12 1.48 2.16 2.83 3.25 3.48 
ACE 44 0.66 1.07 1.46 2.14 2.82 3.22 3.48 
ACE 4 9 0.66 1.00 1.41 2.12 2.81 3.25 3.42 
ACE Variable 1.37 1.64 1.95 2.59 3.20 3.51 3.74 
AVAS Variable 1.24 1.56 1.89 2.51 3.24 3.50 3.74 

OLS 0.51 0.92 1.28 1.98 2.62 2.98 3.23 

Source: Author's calculations. 
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Table  2  RADF P e r c e n t i l e s  

Method Window 5  % 10% 20% 50% 80% 90% 95% 

ACE 9  1 . 8 9  2.07 2 .39  3 .05  3.58 3 .87  4 . 1 1  

ACE 1 4  1 . 6 9  1 . 9 8  2.19 2 . 8 3  3 .42  3 .77  4 . 0 4  
ACE 1 9  1 . 5 7  1 . 8 4  2 .09 2 .73 3 . 3 1  3.66 3 . 8 8  
ACE 2  4  1 . 5 3  1 . 7 5  2 . 0 4  2 . 6 1  3.22 3 .62  3 .85  
ACE 2  9  1 . 4 2  1 .66  1 . 8 9  2 .49 3 . 2 3  3 .65  3 . 8 8  

ACE 3  4  1 . 4 3  1 . 5 6  1 . 8 0  2 . 4 1  3 . 2 1  3 . 5 1  3 . 8 0  
ACE 3  9  1 . 3 5  1 . 5 1  1 . 7 5  2 .38  3 .14  3.37 3 .72 
ACE 44 1 . 2 8  1 . 4 8  1 . 7 3  2 .34  3.07 3 . 3 1  3 .57  
ACE 4  9  1 . 2 8  1 . 5 0  1 . 6 9  2 .29 2.95 3 .26  3 .46  
ACE V a r i a b l e  1 . 2 1  1 . 4 7  1 . 7 9  2 .37  2 . 9 5  3 .28 3 . 6 1  

J v A  S V a r i a b l e  1 . 1 8  1 . 4 7  1 . 7 0  2 .30  7 . 9 1  3 .37 3 .50  
(b )  p = 0 .333  

ACE 9  1 . 8 8  2 .09 2 .34  2 .89  3 .45  3 .85  3 .98  
ACE 1 4  1 . 7 1  1 . 9 2  2 . 1 9  2 . 7 1  3 .30  3 .60  3 . 9 1  
ACE 1 9  1 . 5 9  1 . 8 0  2 .12 2 .63  3 .22 3 .54  3 . 8 5  
ACE 24 1 . 4 8  1 . 6 7  2 .02 2 . 5 3  3 . 1 1  3 .43  3.69 
ACE 2  9  1 . 4 2  1 . 5 8  1 . 9 2  2 .45  3 .08 3 .33  3 .58  
ACE 3  4  1 . 3 7  1 . 5 4  1 .86  2 .38  3 .00  3.27 3 .52  
ACE 3  9  1 . 3 1  1 . 5 3  1 . 8 2  2 .28  3 .02 3 .30  3 . 5 5  
ACE 44 1 . 2 6  1 . 4 3  1 . 7 7  2 .24  2 .95  3 .27 3 .48 
ACE 49 1 .22  1 . 4 2  1 . 7 2  2 . 2 4  2 .93  3 .22 3 .36  
ACE V a r i a b l e  1 . 2 9  1 . 5 2  1 . 8 4  2 .40  3 . 0 1  3 .37  3 .65  

V a r i a b l e  1 . 1 5  1 . 4 3  1 . 7 3  7 . 3 9  7 .88  3  - 3 5  3 .53 

( c )  8 = 3  

ACE 

ACE 

ACE 
ACE 

ACE 

ACE 

ACE 

ACE 
ACE 

ACE 

AVAS 

9  1 . 4 8  1 . 6 5  1 . 8 9  
1 4  1 . 3 8  1 . 5 1  1 . 8 0  
19  1 . 2 8  1 . 4 9  1 . 7 4  
2  4  1 . 2 5  1 . 4 3  1 . 6 8  
2  9  1 . 2 2  1 . 3 8  1 . 6 5  
34 1 . 1 2  1 . 4 0  1 . 6 1  
3  9  1 . 1 2  1 . 3 5  1 . 6 0  
44  1 . 0 9  1 . 3 3  1 . 5 8  
49 1 .05  1 . 3 0  1 . 5 6  

V a r i a b l e  1 . 3 8  1 . 6 1  1 . 8 9  
V a r i a b l e  1 . 3 6  1 . 5 6  1 . 8 3  

OLS 0 .36  0 .79  1 . 2 1  1 . 9 5  2 .61  3 .02 3 . 2 3  

S o u r c e :  A u t h o r ' s  c a l c u l a t i o n s .  
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Table 3 ADF and RADF as a Linear Cointegration Test 

(a) ADF Percentiles 

No. of 
Regressors 1% 5 % 10% 20% 50% 80% 90% 95% 99% 

1 -0.22 0.53 0.89 1.29 1.95 2.60 2.96 3.29 3.82 

(b) RADF Percentiles 

Source: Author's calculations. 

The most interesting results are those for P = 3. In this 

case there is considerable correlation between @(xt) and 8(yt), 

even though they are not cointegrated. This is the most likely 

null hypothesis in practice. When P = 3, the higher percentiles 

(80, 90, and 95) of the ADF are about 0.1 greater than the 

corresponding RADF percentiles. The upper percentiles of the two 

statistics for OLS (table 3) and the variable window procedures are 

even closer. Looking at the fixed window results, it appears that 

for window sizes of one-fourth to one-half the sample size, the 

higher percentiles fall between those found in lines 1 and 2 of 

table 3, panel a. The critical values for the OLS ADF with two 

regressors thus provide a conservative test for the ADF and RADF 

when ACE with a fixed window smoother is used. For the variable 

window procedures, adding 0.2 (for an ADF test) or 0.1 (for an RADF 
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test) to these same critical values gives a test of about the right 

size. 

V. Applications 

The estimation and testing techniques of sections I11 and IV 

were applied to two bivariate data sets: (i) monthly observations 

of prices and dividends of the Standard & Poor's common stock 

composite index from January 1957 through February 1990 and (ii) 

quarterly U.S. nominal GNP and M2 money supply from 1959: IQ through 

1989:IVQ. For each data set, the first variable was regressed on 

the second using OLS, ACE, and AVAS. 

The present value model maintains that the price of a stock is 

the discounted sum of expected future dividends; that is, 

If dividends, d,, follow a difference-stationary process and the 

discount rate, Pt, is less than one and constant, then Campbell and 

Shiller (1986) argue that equation (6) implies cointegration of 

dividends and prices. To see why, rewrite it as 

using the notation 4dth = (dth - dt) . Since 4dt follows a 

stationary process, goes the argument, so too does its expectation. 
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A discounted sum of stationary variables is also stationary, so 

(D 

C p h ~ , ~ d t ,  is stationary and p,, d, are cointegrated. 

Unfortunately, the argument that the stationarity ofA,,d, 

guarantees the stationarity of E, A,,dth is incorrect. The 

expectation can change each period due to influences on agents' 

expectations that are not stationary. The argument does hold if 

the optimal forecast E,A,,d,, is a linear function of past values of 

p, and d, with constant coefficients. But as seen in table 4, a 

unit root cannot be rejected in the residual from a regression of 

prices on dividends. The low Durbin-Watson statistic indicates 

that this is a spurious regression of the kind discussed in Granger 

and Newbold (1974), and the values of the ADF and RADF statistics 

are not nearly large enough to reject the hypothesis of a unit root 

in the OLS residuals. Figure l(a) is a scatterplot of stock prices 

and dividends with the regression line superimposed. The LMM 

behavior of the residual is evident. 
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Table 4 Stock Prices and Dividends 

Procedure 
Series ADF(4) RADF (4) DW R~ 

OLS .850 

pt 2.46 -1.23 

dt 5.50 .56 

Gt -2.18 -1.98 .038 

ACE .984 

0 ( ~ t )  1.43 -1.23 

AVAS 

0 (P,) 

9 (dt) 

+ 

Source: Author's calculations. 

Figures 1 (b) and 1 (c) show the transformations of stock prices 

and dividends estimated by the variable window ACE, while figures 

l(d) and l(e) show the AVAS transformations. The dividend 

transformation looks similar for both procedures, but the AVAS 

price transformation shows some evidence of nonlinearity not 

present in the corresponding ACE transformation. The reason for 

the difference is evident in plots of the ACE and AVAS residuals, 

figures l(f) and l(g). The ACE residual variance shows a clear 

trend that the AVAS price transformation has eliminated. 

The DW is low for both the ACE and AVAS residuals, but the ADF 
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and RADF statistics are well above the 95th percentiles noted in 

tables 1 and 2. This suggests that prices and dividends are 

cointegrated after an appropriate transformation has been applied 

to dividends. Upon closer examination of the original series, 

however, it becomes apparent that the nonlinearity in the dividend 

transformation, particularly the flat spot between d = 3 and d = 7, 

is almost entirely due to the behavior of the two series over the 

1970s. In January 1967, prices and dividends were $84.45 and 

$2.96, respectively. Fifteen years and seven months later, 

dividends had risen by 155 percent (to $7.56), while stock prices 

had climbed only 40 percent (to $117.86). Since that period, both 

series have trended mostly upward. Because there appears to be 

little likelihood that dividends will ever again be in the $3.00 to 

$7.50 range, there is no way to tell the difference between 

nonlinear cointegration and linear cointegration with time-varying 

parameters for these series. Given the well-known problems 

resulting from inappropriate detrending of 1(1) time series, ACE 

and AVAS transformations of trending series should be interpreted 

with caution. 

Economically, the dividend transformation is not very 

satisfying. The present value theory implies cointegration between 

prices and dividends, not transformations of prices and dividends. 

The cause of economic understanding would be better served through 

an exploration of why cointegration is not found in the data. An 

obvious starting point would be to allow for time variation in the 

discount rate. Another explanation may be that investors in the 
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1970s thought dividend payouts were unsustainably high, perhaps due 

to the inadequate adjustment of depreciation allowances for 

inflation or obsolescence. Some support for the latter view is 

found by Campbell and Shiller, who report that the dividend-price 

ratio Granger causes dividends. 

A second example clearly shows the differences between ACE and 

AVAS. Engle and Granger (1987) report that GNP and M2 are 

cointegrated in logarithms. Running either ACE or AVAS on the 

logarithms of the series results in transformations (figures 2[a] 

through 2[d]) that appear linear. However, if ACE and AVAS are 

used with the levels of M2 and GNP (figures 2[e] through 2[h]), 

only the AVAS algorithm finds the log transformation. The ACE 

algorithm finds that the very strong linear relationship it starts 

out with improves only slightly on subsequent iterations, so it 

stops. There is, however, an exponential trend in the residual 

variance. AVAS tries to eliminate it, and the resulting variance- 

stabilizing transformations look very much like scaled logarithms. 

Table 5 shows some statistics from OLS, ACE, and AVAS. The OLS 

results are for the logs of M2 and GNP, but the others are not. 
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Table 5 GNP and M2 

Procedure 
Series ADF(4) RADF ( 4 ) DW R~ 

- 

OLS .99834 

109 (yt) 3.90 .70 

109 (mt 3.98 .OO 

& - -3.37 -3.44 .15 

ACE 

0 (yt) 

@ (mt 

t 

AVAS 

0 (Yt) 

@ (mt) 

6- 

Source: Author's calculations. 

VI. Conclusion 

Attractor sets are the special case of nonlinear cointegration 

in which the cointegrating function is the Euclidean distance 

function. However, series can be nonlinearly cointegrated in an 

economically interesting way without having an attractor. It may 

be better to aim future research at methods of discovering 

interesting cointegrating functions rather than at looking for 

attractors. 

If several series are cointegrated only after they are 

individually nonlinearly transformed, this can be thought of as an 

additively separable cointegrating function. Granger and Hallman 
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(1990) propose using ACE to estimate the transformations and the 

ADF to test for nonlinear cointegration. In this paper, it appears 

that a version of ACE modified to stabilize the residual variance 

may be more useful. Once the possibility of nonlinear 

transformations of the data is acknowledged, it would be sensible 

to employ a unit root test that is robust to such changes. The 

RADF is expressly designed for this purpose, so both it and the 

conventional ADF are employed. 
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Figure I (b): ACE Transformation of Stock Prices 

stock.prices 

Figure I (c): ACE Transformation of Stock Dividends 

Source: Author 's  c a l c u l a t i o n s .  
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Figure 1 (d): AVAS Transformation of Stock Prices 

stock.prices 

Figure 1 (e): AVAS Transformation of Stock Dividends 

Source: Author's calculat ions . 
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Figure 1 (f): ACE Residual for Prices and Dividends 

1960 1970 1980 1990 

Figure 1 (g): AVAS Residual for Prices and Dividends 

1960 1 970 

Source: Author's calculations. 
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Figure 2(a): ACE Transformation of log(rn2.q) 

log(m2.q) 

Figure 2(b): ACE Transformation of log(gnp.q) 

Source: Au tho r ' s  c a l c u l a t i o n s .  
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Figure 2(c): AVAS Transformation of log(m2.q) 

Figure 2(d): AVAS Transformation of log(gnp.q) 

LC! 
7- 

LC! 
7- I 

Source: Author's calculations.  
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Figure 2(e): ACE Transformation of m2.q 

Source: Author 's  ca l cu la t ions .  
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Figure 2 0 :  ACE Transformation of gnp.q 
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Figure 2(g): AVAS Transformation of m2.q 

Solid line is scaled log transform 

500 1000 1500 2000 2500 3000 

m2.q 

Figure 2(h): AVAS Transformation of gnp.q 

Solid line is scaled log transform 

Author ' s  c a l c u l a t i o n s  . 
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