11 research outputs found

    Extracellular Vesicles Released by Cardiomyocytes in a Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers of Early Cardiac Injury

    Get PDF
    Purpose—Cardiac injury is a major cause of death in cancer survivors, and biomarkers for it are detectable only after tissue injury has occurred. Extracellular vesicles (EV) remove toxic biomolecules from tissues and can be detected in the blood. Here, we evaluate the potential of using circulating EVs as early diagnostic markers for long-term cardiac injury. Experimental Design—Using a mouse model of doxorubicin (DOX)-induced cardiac injury, we quantified serum EVs, analyzed proteomes, measured oxidized protein levels in serum EVs released after DOX treatment, and investigated the alteration of EV content. Results—Treatment with DOX caused a significant increase in circulating EVs (DOX_EV) compared with saline-treated controls. DOX_EVs exhibited a higher level of 4-hydroxynonenal adducted proteins, a lipid peroxidation product linked to DOX-induced cardiotoxicity. Proteomic profiling of DOX_EVs revealed the distinctive presence of brain/heart, muscle, and liver isoforms of glycogen phosphorylase (GP), and their origins were verified to be heart, skeletal muscle, and liver, respectively. The presence of brain/heart GP (PYGB) in DOX_EVs correlated with a reduction of PYGB in heart, but not brain tissues. Manganese superoxide dismutase (MnSOD) overexpression, as well as pretreatment with cardioprotective agents and MnSOD mimetics, resulted in a reduction of EV-associated PYGB in mice treated with DOX. Kinetic studies indicated that EVs containing PYGB were released prior to the rise of cardiac troponin in the blood after DOX treatment, suggesting that PYGB is an early indicator of cardiac injury. Conclusion—EVs containing PYGB are an early and sensitive biomarker of cardiac injury

    Modeling the Impact of Lesions in the Human Brain

    Get PDF
    Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous (“resting-state”) neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions

    Overlay technology space map for analyzing design knowledge base of a technology domain: the case of hybrid electric vehicles

    No full text
    Abstract A tangible understanding of the latent design knowledge base of a technology domain, i.e., the set of technologies and related design knowledge used to solve the specific problems of a domain, and how it evolves, can guide engineering design efforts in that domain. However, methods for extracting, analyzing and understanding the structure and evolutionary trajectories of a domain’s accumulated design knowledge base are still underdeveloped. This study introduces a network-based methodology for visualizing and analyzing the structure and expansion trajectories of the design knowledge base of a given technology domain. The methodology is centered on overlaying the total technology space, represented as a network of all known technologies based on patent data, with the specific knowledge positions and estimated expansion paths of a specific domain as a subgraph of the total network. We demonstrate the methodology via a case study of hybrid electric vehicles. The methodology may help designers understand the technology evolution trajectories of their domain and suggest next design opportunities or directions

    The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala

    No full text
    Contemporary research suggests that the mammalian brain is a complex system, implying that damage to even a single functional area could have widespread consequences across the system. To test this hypothesis, we pharmacogenetically inactivated the rhesus monkey amygdala, a subcortical region with distributed and well-defined cortical connectivity. We then examined the impact of that perturbation on global network organization using resting-state functional connectivity MRI. Amygdala inactivation disrupted amygdalocortical communication and distributed corticocortical coupling across multiple functional brain systems. Altered coupling was explained using a graph-based analysis of experimentally established structural connectivity to simulate disconnection of the amygdala. Communication capacity via monosynaptic and polysynaptic pathways, in aggregate, largely accounted for the correlational structure of endogenous brain activity and many of the non-local changes that resulted from amygdala inactivation. These results highlight the structural basis of distributed neural activity and suggest a strategy for linking focal neuropathology to remote neurophysiological changes

    Taxing Privilege More Effectively: Replacing the Estate Tax with an Inheritance Tax

    No full text

    Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    No full text
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed

    Same data, different conclusions : radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    No full text
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed
    corecore