44 research outputs found
Stellar Activity Cycles
The magnetic field of the Sun is generated by internal dynamo process with a
cyclic period of 11 years or a 22 year magnetic cycle. The signatures of the
Sun's magnetic cycle are observed in the different layers of its atmosphere and
in its internal layers. In this review, we use the same diagnostics to
understand the magnetic cycles of other stars with the same internal structure
as the Sun. We review what is currently known about mapping the surface
magnetic fields, chromospheric and coronal indicators, cycles in photometry and
asteroseismology. We conclude our review with an outlook for the future.Comment: accepted by Space Science Review
The effects of stellar winds on the magnetospheres and potential habitability of exoplanets
Context: The principle definition of habitability for exoplanets is whether
they can sustain liquid water on their surfaces, i.e. that they orbit within
the habitable zone. However, the planet's magnetosphere should also be
considered, since without it, an exoplanet's atmosphere may be eroded away by
stellar winds. Aims: The aim of this paper is to investigate magnetospheric
protection of a planet from the effects of stellar winds from solar-mass stars.
Methods: We study hypothetical Earth-like exoplanets orbiting in the host
star's habitable zone for a sample of 124 solar-mass stars. These are targets
that have been observed by the Bcool collaboration. Using two wind models, we
calculate the magnetospheric extent of each exoplanet. These wind models are
computationally inexpensive and allow the community to quickly estimate the
magnetospheric size of magnetised Earth-analogues orbiting cool stars. Results:
Most of the simulated planets in our sample can maintain a magnetosphere of ~5
Earth radii or larger. This suggests that magnetised Earth analogues in the
habitable zones of solar analogues are able to protect their atmospheres and is
in contrast to planets around young active M dwarfs. In general, we find that
Earth-analogues around solar-type stars, of age 1.5 Gyr or older, can maintain
at least a Paleoarchean Earth sized magnetosphere. Our results indicate that
planets around 0.6 - 0.8 solar-mass stars on the low activity side of the
Vaughan-Preston gap are the optimum observing targets for habitable Earth
analogues.Comment: 8 pages, 3 figures, accepted to Astronomy and Astrophysic
The impact of unresolved magnetic spots on high precision radial velocity measurements
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.The Doppler method of exoplanet detection has been extremely successful, but suffers from contaminating noise from stellar activity. In this work a model of a rotating star with a magnetic field based on the geometry of the K2 star Epsilon Eridani is presented and used to estimate its effect on simulated radial velocity measurements. A number of different distributions of unresolved magnetic spots were simulated on top of the observed large-scale magnetic maps obtained from eight years of spectropolarimetric observations. The radial velocity signals due to the magnetic spots have amplitudes of up to 10 m s, high enough to prevent the detection of planets under 20 Earth masses in temperate zones of solar type stars. We show that the radial velocity depends heavily on spot distribution. Our results emphasize that understanding stellar magnetic activity and spot distribution is crucial for detection of Earth analogues.Peer reviewe
Topological changes in the magnetic field of LQ Hya during an activity minimum
Aims. Previous studies have related surface temperature maps, obtained with the Doppler imaging (DI) technique, of LQ Hya with long-term photometry. Here, we compare surface magnetic field maps, obtained with the Zeeman Doppler imaging (ZDI) technique, with contemporaneous photometry, with the aim of quantifying the star's magnetic cycle characteristics. Methods. We inverted Stokes IV spectropolarimetry, obtained with the HARPSpol and ESPaDOnS instruments, into magnetic field and surface brightness maps using a tomographic inversion code that models high signal-to-noise ratio mean line profiles produced by the least squares deconvolution (LSD) technique. The maps were compared against long-term ground-based photometry acquired with the T3 0.40 m Automatic Photoelectric Telescope (APT) at Fairborn Observatory, which offers a proxy for the spot cycle of the star, as well as with chromospheric Ca II H&K activity derived from the observed spectra. Results. The magnetic field and surface brightness maps reveal similar patterns relative to previous DI and ZDI studies: nonaxisymmetric polar magnetic field structure, void of fields at mid-latitudes, and a complex structure in the equatorial regions. There is a weak but clear tendency of the polar structures to be linked with a strong radial field and the equatorial ones with the azimuthal field. We find a polarity reversal in the radial field between 2016 and 2017 that is coincident with a spot minimum seen in the long-term photometry, although the precise relation of chromospheric activity to the spot activity remains complex and unclear. The inverted field strengths cannot be easily related with the observed spottedness, but we find that they are partially connected to the retrieved field complexity. Conclusions. This field topology and the dominance of the poloidal field component, when compared to global magnetoconvection models for rapidly rotating young suns, could be explained by a turbulent dynamo, where differential rotation does not play a major role (so-called alpha(2)Omega(2) or alpha(2) dynamos) and axi- and non-axisymmetric modes are excited simultaneously. The complex equatorial magnetic field structure could arise from the twisted (helical) wreaths often seen in these simulations, while the polar feature would be connected to the mostly poloidal non-axisymmetric component that has a smooth spatial structure.Peer reviewe
Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TQ Hydrae
We present high spectral resolution (R ≈ 108,000) Stokes V polarimetry of the classical T Tauri stars (CTTSs)
GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m
telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the
polarization properties of the He i emission lines at 5876 Ã… and 6678 Ã…. The He i lines in these CTTSs contain both
narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission
components which may come from either a wind or the large-scale magnetospheric accretion flow.We detect strong
polarization in the narrow component of the two He i emission lines in both stars. We observe a maximum implied
field strength of 6.05 ± 0.24 kG in the 5876 Å line of GQ Lup, making it the star with the highest field strength
measured in this line for a CTTS. We find field strengths in the two He i lines that are consistent with each other,
in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the
broad component of the He i lines on these stars, strengthening the conclusion that they form over a substantially
different volume relative to the formation region of the narrow component of the He i lines
Asteroseismology and Spectropolarimetry of the Exoplanet Host Star λ Serpentis
The bright star lambda Ser hosts a hot Neptune with a minimum mass of 13.6 M & OPLUS; and a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to its present configuration. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite, and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and estimate the wind braking torque. We conclude that the remaining uncertainty on the stellar age currently prevents an unambiguous interpretation of the properties of lambda Ser, and that the rate of angular momentum loss appears to be higher than for other stars with a similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age
CARMENES input catalog of M dwarfs: VII. New rotation periods for the survey stars and their correlations with stellar activity
Abridged: We measured photometric and spectroscopic for a large
sample of nearby bright M dwarfs with spectral types from M0 to M9, as part of
our continual effort to fully characterize the Guaranteed Time Observation
programme stars of the CARMENES survey. We determine for 129
stars. Combined with the literature, we tabulate for 261 stars,
or 75% of our sample. We evaluate the plausibility of all periods available for
this sample by comparing them with activity signatures and checking for
consistency between multiple measurements. We find that 166 of these stars have
independent evidence that confirmed their . There are
inconsistencies in 27 periods, which we classify as debated. A further 68
periods are identified as provisional detections that could benefit from
independent verification. We provide an empirical relation for the uncertainty as a function of the value, based on the
dispersion of the measurements. We show that published formal errors seem to be
often underestimated for periods d. We highlight the importance of
independent verification on measurements, especially for inactive
M dwarfs. We examine rotation-activity relations with emission in X-rays,
H, Ca II H & K, and surface magnetic field strengths. We find overall
agreement with previous works, as well as tentative differences in the
partially versus fully convective subsamples. We show as a
function of stellar mass, age, and galactic kinematics. With the notable
exception of three transiting planet systems and TZ Ari, all known planet hosts
in this sample have d. This indicates that important
limitations need to be overcome before the radial velocity technique can be
routinely used to detect and study planets around young and active stars.Comment: Accepted for publication in A&
Estimating magnetic filling factors from Zeeman–Doppler magnetograms
V.S., S.P.M., and A.J.F.acknowledge funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 682393 AWESoMeStars). S.B.S. acknowledges funding via the Austrian Space Application Programme (ASAP) of the Austrian Research Promotion Agency (FFG) within ASAP11, the FWF NFN project S11601-N16 and the sub-project S11604-N16. A. A.V. acknowledges funding received from the Irish Research Council Laureate Awards 2017/2018.Low-mass stars are known to have magnetic fields that are believed to be of dynamo origin. Two complementary techniques are principally used to characterize them. Zeeman–Doppler imaging (ZDI) can determine the geometry of the large-scale magnetic field while Zeeman broadening can assess the total unsigned flux including that associated with small-scale structures such as spots. In this work, we study a sample of stars that have been previously mapped with ZDI. We show that the average unsigned magnetic flux follows an activity-rotation relation separating into saturated and unsaturated regimes. We also compare the average photospheric magnetic flux recovered by ZDI, BV, with that recovered by Zeeman broadening studies, BI. In line with previous studies, BV ranges from a few % to ~20% of BI. We show that a power-law relationship between BV and BI exists and that ZDI recovers a larger fraction of the magnetic flux in more active stars. Using this relation, we improve on previous attempts to estimate filling factors, i.e., the fraction of the stellar surface covered with magnetic field, for stars mapped only with ZDI. Our estimated filling factors follow the well-known activity-rotation relation, which is in agreement with filling factors obtained directly from Zeeman broadening studies. We discuss the possible implications of these results for flux tube expansion above the stellar surface and stellar wind models.Publisher PDFPeer reviewe
A highly invasive human glioblastoma pre-clinical model for testing therapeutics
Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM) mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino)-17-demethoxy geldanamycin (17AAG). Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM) to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2). These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents