82 research outputs found

    A catchment scale assessment of patterns and controls of historic 2D river planform adjustment

    Get PDF
    The supply, transfer and deposition of sediment from channel headwaters to lowland sinks, is a fundamental process governing upland catchment geomorphology, and can begin to be understood by quantifying 2D river planform adjustments over time. This paper presents a catchment scale methodology to quantify historic patterns of 2D channel planform adjustment and considers geomorphic controls on 2D river stability. The methodology is applied to 18 rivers (total length = 24 km) in the upland headwaters of the previously glaciated Wasdale catchment (45 km2), Lake District, northwest England. Planform adjustments were mapped from historic maps and air photographs over six contiguous time windows covering the last 150 yr. A total of 1048 adjustment and stable reaches were mapped. Over the full period of analysis (1860–2010) 32% (8 km) of the channels studied were adjusting. Contrasts were identified between the geomorphic characteristics (slope, catchment area, unit specific stream power, channel width and valley bottom width) of adjusting and stable reaches. The majority of adjustments mapped were observed in third and fourth order channels in the floodplain valley transfer zone, where the channels were laterally unconfined (mean valley bottom widths of 230 ± 180 m), with low sediment continuity. In contrast, lower order channels were typically confined (mean valley bottom widths of 31 ± 43 m) and showed relative 2D lateral stability. Hence, valley bottom width was found to be important in determining the available space for rivers to adjust. Over the full period of analysis 38% of planform adjustments involved combined processes, for example, as bar and bend adjustments. The study demonstrates the importance of stream network hierarchy in determining spatial patterns of historic planform adjustments at the catchment scale. The methodology developed provides a quantitative assessment of planform adjustment patterns and geomorphic controls, which is needed to support the prioritisation of future river management and restoration

    Modeling complex flow structures and drag around a submerged plant of varied posture

    Get PDF
    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000–110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance

    Critical assessment and validation of a time-integrating fluvial suspended sediment sampler

    Get PDF
    Delivery of fine sediment to fluvial systems is of considerable concern given the physical and ecological impacts of elevated levels in drainage networks. Although it is possible to measure the transfer of fine sediment at high frequency by using a range of surrogate and automated technologies, the demands for assessing sediment flux and sediment properties at multiple spatially distributed locations across catchments can often not be met using established sampling techniques. The time-integrated mass-flux sampler (TIMS) has the potential to bridge this gap and further our understanding of fine sediment delivery in fluvial systems. However, these devices have undergone limited testing in the field. The aim of this paper was to provide a critical validation of TIMS as a technique for assessing fluvial fine sediment transfer. Fine sediment flux and sediment properties were assessed over 2 years with individual sampling periods of approximately 30 days. Underestimation of sediment flux ranged between 66% and 99% demonstrating that TIMS is unsuitable for assessing absolute sediment loads. However, assessment of relative efficiency showed that six of seven samplers produced statistically strong relationships with the reference sediment load (P < 0.05). Aggregated data from all sites produced a highly significant relationship between reference and TIMS loads (R2 = 0.80; P < 0.001) demonstrating TIMS may be suitable for characterizing patterns of suspended sediment transfer. Testing also illustrated a consistency in sediment properties between multiple samplers in the same channel cross section. TIMS offers a useful means of assessing spatial and temporal patterns of fine sediment transfer across catchments where expensive monitoring frameworks cannot be commissioned

    Contemporary geomorphological activity throughout the proglacial area of an alpine catchment

    No full text
    Quantification of contemporary geomorphological activity is a fundamental prerequisite for predicting the effects of future earth surface process and landscape development changes. However, there is a lack of high-resolution spatial and temporal data on geomorphological activity within alpine catchments, which are especially sensitive to climate change, human impacts and which are amongst the most dynamic landscapes on Earth. This study used data from repeated laser scanning to identify and quantify the distribution of contemporary sediment sources and the intensity of geomorphological activity within the lower part of a glaciated alpine catchment; Ödenwinkelkees, central Austria. Spatially, geomorphological activity was discriminated by substrate class. Activity decreased in both areal extent and intensity with distance from the glacier, becoming progressively more restricted to the fluvially-dominated valley floor. Temporally, geomorphological activity was identified on annual, seasonal, weekly and daily timescales. Activity became more extensive with increasing study duration but more intense over shorter timescales, thereby demonstrating the importance of temporary storage of sediment within the catchment. The mean volume of material moved within the proglacial zone was 4400m.yr, which suggests a net surface lowering of 34mm.yr in this part of the catchment. We extrapolate a minimum of 4.8mm.yr net surface lowering across the whole catchment. These surface lowering values are approximately twice those calculated elsewhere from contemporary measurements of suspended sediment flux, and of rates calculated from the geological record, perhaps because we measure total geomorphological activity within the catchment rather than overall efflux of material. Repeated geomorphological surveying therefore appears to mitigate the problems of hydrological studies underestimating sediment fluxes on decadal-annual time-scales. Further development of the approach outlined in this study will enable the quantification of geomorphological activity, alpine terrain stability and persistence of landforms

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Peat landslides

    No full text
    Peat landslides form a distinct suite of slope failures which are characteristic of landscapes where organic soils dominate. Six main types of peat mass movement are recognised: bog burst, bog flow, bog slide, peat slide, peaty-debris slide and peat flow. Such failures have been prevalent in the British Isles, but their occurrence globally is far more widespread than hitherto reported. Peat has distinct geotechnical properties that influence its stability and govern the range of impacts of landslide events. Geotechnically peat is a low-density, organic-rich, nonmineral soil which has a high water content, significant fibre content, high voids ratio, high compressibility and low shear strength. Peat landslides cause significant environmental impacts at-a-site and their runout is far travelled causing considerable downstream devastation to infrastructure and stream habitats. Peat landslides triggered by construction in upland areas demonstrate the importance of surface and sub-surface drainage and surface loading in contributing to failure. Although the general mechanisms of peat failure are now well understood, considerable uncertainties remain, associated with determining geotechnical properties of peat, adequately assessing the hydrological conditions relating to peat instability and establishing long-term magnitude–frequency relationships

    Supplementary data

    No full text
    • …
    corecore