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The supply, transfer and deposition of sediment fromchannel headwaters to lowland sinks, is a fundamental pro-
cess governing upland catchment geomorphology, and can begin to be understood by quantifying 2D river plan-
form adjustments over time. This paper presents a catchment scale methodology to quantify historic patterns of
2D channel planform adjustment and considers geomorphic controls on 2D river stability. The methodology is
applied to 18 rivers (total length= 24 km) in the upland headwaters of the previously glaciatedWasdale catch-
ment (45 km2), LakeDistrict, northwest England. Planform adjustmentsweremapped fromhistoricmaps and air
photographs over six contiguous time windows covering the last 150 yr. A total of 1048 adjustment and stable
reaches were mapped. Over the full period of analysis (1860–2010) 32% (8 km) of the channels studied were
adjusting. Contrastswere identified between the geomorphic characteristics (slope, catchment area, unit specific
stream power, channel width and valley bottom width) of adjusting and stable reaches. The majority of adjust-
mentsmappedwere observed in third and fourth order channels in thefloodplain valley transfer zone,where the
channelswere laterally unconfined (mean valley bottomwidths of 230± 180m), with low sediment continuity.
In contrast, lower order channelswere typically confined (mean valley bottomwidths of 31±43m) and showed
relative 2D lateral stability. Hence, valley bottom width was found to be important in determining the available
space for rivers to adjust. Over the full period of analysis 38% of planform adjustments involved combined pro-
cesses, for example, as bar and bend adjustments. The study demonstrates the importance of streamnetwork hi-
erarchy in determining spatial patterns of historic planform adjustments at the catchment scale. The
methodology developed provides a quantitative assessment of planform adjustment patterns and geomorphic
controls, which is needed to support the prioritisation of future river management and restoration.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Systematic assessment of the spatial and temporal patterns of river
planform adjustments provides important insights for understanding
current and potential future river behaviour (Hooke and Redmond,
1989a; Winterbottom, 2000; Brierley and Fryirs, 2005a; Lisenby and
Fryirs, 2016; Rinaldi et al., 2016). This is because channels adjust
through erosion, transfer and deposition of sediment (Lewin, 1977;
Thorne, 1997) and therefore, channel planform adjustments reflect sed-
iment continuity. Sediment continuity is defined as the conservation of
mass between fluvial sediment inputs, storage and outputs in a river
system (Joyce et al., 2018). Contemporary channel planform is a conse-
quence of the legacy of past and present, exogenic and endogenic forces,
controlling water and sediment continuity across a catchment
(Schumm, 1977; Ferguson, 1987; Newson, 1997; Sear et al., 2003;
Joyce et al., 2018; Bizzi et al., 2019). However, few studies (Hooke and
Redmond, 1989a; Wishart, 2004; Lisenby and Fryirs, 2016) have
ce).

.V. This is an open access article und
adopted rigorous quantitative assessments of channel planform adjust-
ment and stability at the catchment scale over historical time periods.

To understand the spatial and temporal pattern of planform adjust-
ments and sediment continuity it is important to quantify the variables
controlling planform stability (Martínez-Fernández et al., 2019). Cli-
mate influences the frequency and magnitude of flood events, and
therefore the stream power available to erode and transport sediment
(Newson, 1980; Wolman and Miller, 1960; Milne, 1982; McEwen,
1994; Rumsby and Macklin, 1994; Werritty and Leys, 2001; Johnson
and Warburton, 2002; Surian et al., 2016). Geological and geomorpho-
logical processes (Higgitt et al., 2001) determine availability of sedi-
ment, sediment type, topographic confinement, the presence of lakes
and channel slope (Milne, 1983; Fryirs et al., 2016). Anthropogenic ac-
tivity influences the flow regime (Petts, 1979; Kondolf, 1997), sediment
supply (Heckmann et al., 2017), and space available for planform ad-
justment (Gilvear and Winterbottom, 1992; Surian and Rinaldi, 2003).
Channels adjust in response to these collective controls.

Two dimensional planform adjustments can be readily identified
from historic maps and air photographs over the last century (the pe-
riod of ‘measurable change’) when such resources are available. This
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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provides a suitable time span to understand planform adjustments in
response to recent changes in climate and land use (Schumm and
Lichty, 1965; Hooke and Redmond, 1989b; Winterbottom, 2000;
Higgitt et al., 2001). However, there is no consistent quantitative meth-
odology that applies a catchment wide assessment of the temporal pat-
terns of planform adjustment from channel headwaters to lowland
sediment sinks (Bizzi et al., 2019). Traditionally, channel planform ad-
justments have been investigated at the reach scale at locations of insta-
bility in high streamorder channels in the transfer zone of the sediment
cascade (Schumm, 1969; Lewin and Hughes, 1976; Lewin, 1977; Lewin
et al., 1977; Blacknell, 1981;Milne, 1982;Milne, 1983;Warburton et al.,
2002;Wishart et al., 2008; Hooke and Yorke, 2010). These studies often
fail to characterise the spatial and temporal patterns of sediment conti-
nuity because: (i) active adjustment reaches are not evaluated in the
broader catchment context, for example along the entire length of a
river or between rivers in the same catchment where similar geomor-
phic conditions occur (Fryirs et al., 2009; Gurnell et al., 2016); (ii) the
historic pattern of channel adjustment and stability is not assessed;
and (iii) the geomorphic characteristics of both stable and active chan-
nel reaches are not quantified, which is needed to explain and identify
the locations susceptible to future adjustment.

The benefit of spatial planform adjustment studies is widely
recognised (Hooke and Redmond, 1989a; Rosgen, 1994; Macklin et al.,
1998; Wishart, 2004; Lisenby and Fryirs, 2016; England and Gurnell,
2016), and is reinforced by recent European and UK legislation, which
emphasise the need for integrated and catchment wide assessments
of the hydro-morphological condition of rivers (c.f. European Water
Framework Directive (European Commission, 2000); Floods Directive
(European Commission, 2007) and UK governmental 25 yr Environ-
mental Plan). Hierarchical river and catchment characterisation ap-
proaches (Brierley and Fryirs, 2005b; Rinaldi et al., 2015a; Gurnell
et al., 2016) and the use of remotely sensed data (Marcus and Fonstad,
2010; Bizzi et al., 2019) have provided an important step towards un-
derstanding channel planform types at the catchment scale (Brierley
and Fryirs, 2005a, 2005b). However, hierarchical approaches are often
qualitative, use complex scoring indexes to characterise river types
(Rinaldi et al., 2013; Rinaldi et al., 2015a; Rinaldi et al., 2015b), do not
directly quantify the temporal trajectory of planform adjustment and
fail to capture the geomorphic variables of planform adjustment and
stability within the overall catchment structure (Lisenby and Fryirs,
2016).

This paper presents a catchment-wide methodology to quantita-
tively assess the patterns and geomorphic variables of historic 2D
river planform adjustments within a sediment continuity framework.
The specific objectives of the methodology are: (i) to quantify the spa-
tial pattern of 2D channel planform adjustment over the era of measur-
able change (last 150 yr), (ii) quantify the geomorphic variables forcing
2D channel planform adjustments, and (iii) use data from (i) and (ii) to
understand spatial and temporal patterns of 2D channel planform ad-
justments at the catchment scale. The method is applied and tested in
the Wasdale catchment in the Lake District, northwest England. This
catchment is selected because it exhibits a rich variety of fluvial forms
including: bedrock, confined, unconfined wandering and braided chan-
nels (Harvey, 1997), and has available historic data.

2. Methodology

The methodology proposed here quantifies 2D historic channel
planform dynamics in headwater catchments. Themethod is structured
on Strahler's (1952, 1957) stream order to reflect the natural scaling of
geomorphic variables: catchment area, channel width, length, slope,
stream power and valley bottom width (Leopold and Miller, 1956;
Strahler, 1957; Miller et al., 2002; Hughes et al., 2011). The approach
is applied at the catchment scale and comparisons are made between
stream orders in a similar regional setting. The method uses commonly
available datasets, including: digital terrain models (DTM), air photos,
historic topographic maps, bedrock and superficial geology data,
which are analysed in a Geographical Information System (GIS) package
(Fig. 1). These data requirements allow 2D patterns of river planform
adjustment to be identified, and 1D and 2D catchment geomorphic var-
iables to be extracted. The workflow is summarised in Fig. 1.

2.1. Part 1: Pre-processing - assembly of data and identification of spatial
scales

The methodology takes a top-down perspective working down the
sediment cascade from upland channel headwaters to a point where
the river channel enters either a major lowland valley waterbody
(lake) or, if no water body is present, an endpoint is defined at a point
in the lowland valley. In UK upland regions, the lowland valley is com-
monly defined where the river channel network is no longer
surrounded by hillslopes above 300 m elevation (Atherden, 1992).

The catchment, river channel network and Strahler (1952, 1957)
stream order are first defined using a high-resolution DTM and auto-
mated flow delineation tools in GIS. The stream order network provides
a stratified framework in which the spatial location, length and type of
planform adjustments observed between the temporal data (historic
maps/air photographs) are mapped (Part 2B).

The time interval and frequency over which 2D planform adjust-
ments can be identified depends on the availability of data. In the UK,
studies of channel planform adjustments can, in some cases, be identi-
fied from sources dating from the sixteenth century to present (Lewin,
1987; Macklin and Lewin, 1989; Petts et al., 1989; Macklin et al., 1992;
Downward et al., 1994; Milton et al., 1995; Winterbottom, 2000),
(Table S1). Early sources (1600–1840s) (e.g., estate maps, deposited
plans, enclosure and tithe maps) have limited spatial coverage and ac-
curacy, therefore they are not always suitable for assessing river plan-
form adjustments at the catchment scale (Ferguson, 1977). The
earliest mapswith full continuous spatial coverage suitable for identify-
ing planform adjustments at the catchment scale across England and
Wales are the Ordnance Survey (OS) County Series maps (after 1840s)
at a scale of 1:10,560 (Harley, 1975; Downward et al., 1994). Subse-
quent National Grid series and National Grid imperial and metric map
editions (scale range 1:10,560–1:10,000), produced from large scale
air photographs, provide a full coverage of England and Wales from
the 1940s – 1990s (Table S1). Catchment and regional scale air photo-
graphs provide a recent (1940s - present) view of channel planform at
a high resolution (i.e., 0.25 m) (Werritty and Ferguson, 1980; Petts
et al., 1989). Air photographs and historic maps are geo-referenced in
GIS for planimetric accuracy, following previous recommendations,
using N8 hard-edged ground control points (GCPs) and a second order
polynomial transformation (Hughes et al., 2006; Donovan et al., 2015;
Donovan et al., 2019). Although scale differences and geo-referencing
errors will exist between historic maps and air photographs, the
datasets provide a valuable record of catchment scale 2D planform
over a period of measurable change of approximately the last 150 yr.

2.2. Part 2: Characterisation of fluvial system and assessment of planform
change

Channel planform adjustments and geomorphic variables are mea-
sured in two parts. Part 2A involves extracting geomorphic channel and
catchment variables at station points (SPs) located along the channel net-
work. The SPs are located at intervals scaled according to the streamorder
to reflect the natural scaling of channel width, valley bottom width, bar
size, channel length and catchment area downstream (Leopold and
Maddock, 1953; Strahler, 1957; Miller et al., 2002; Hughes et al., 2011).
The SPs spacing interval is shorter for low stream orders, compared to
high stream orders to account for the differences in channel size across
a catchment. This approach differs to previous studies that have averaged
river variables over length or extracted geomorphic variables at a fixed
spacing interval and applied this to the entire channel network (Fryirs



Fig. 1.Data requirements and GIS workflow for identifying and analysing planform adjustments, stable reaches and geomorphic variables. Part 1 involves manipulation of the DTM using
GIS hydrology tools to identify the rivers and catchment typology. Part 2 involves identifying planform adjustments and extracting at-a-point channel and catchment geomorphic
variables. Part 3 involves linking parts 2A and 2B together to understand the controls influencing the spatial and temporal pattern of planform adjustment. Part 2B and 3 are repeated
for the different time periods of available historic maps and air photographs.
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et al., 2009; Lisenby and Fryirs, 2016) (Fig. 2a). A fixed spacing interval
can result in an unrepresentative sample where short, low stream order
channels have only one SP to extract geomorphic variables, compared
to longer higher stream order channels (Fig. 2).

The stream order channel network is labelled with a series of nodes
(Fig. 2). Nodes are located at the start and end (tributary junction, or
water body) of each channel. For each stream order, the first SP is lo-
cated at the start node of the river. A point is then located at a user-
defined distance (SP interval) downstream from the first point
(e.g., 100 m); the next point is located at the stream order SP interval
distance downstream from the last point and the pattern continues
downstream. Where the distance from one SP to the last SP is less
than the point spacing sampling increment, the measurement point is
selected on the channel of interest upstream (i.e., of a junction or
lake) where there are no significant lake or tributary backwater effects
(Richards, 1982; Hey, 1979).

To select an appropriate SP interval, different spacing intervals can be
tested. Assuming a minimum of two SPs on the shortest channel, a low-
resolution SP spacing interval will have a long spacing interval (for exam-
ple, 400m for second order channels, 1000m for fifth order channels). In
contrast, a high resolution SP interval will have a short spacing interval
(for example, 100 m for second order channels, 400 m for fifth order
channels). Geomorphic characteristics can be extracted from the different
SP intervals at different resolutions and analysis of covariance, ANOCOVA
(Zar, 2010) can be used to identify statistical differences between the geo-
morphic variables of the different SP interval resolutions. If no statistical
differences are present, the lowest resolution SP interval can be used to
represent system geomorphic characteristics.

At each SP, the channel and catchment geomorphic variables
(Table 1) are extracted and compiled into an attribute table (Fig. 1).
These variables provide insight into reach and catchment scale mor-
phology and sediment dynamics and can be directly extracted from
the DTM, historic maps and air photographs (Martínez-Fernández
et al., 2019; Bizzi et al., 2019). The key variables are defined as follows:

Channel length (m) is measured from the start of the stream order or
junction node to the corresponding downstream end or junction node



Fig. 2. Schematic of stream order channel start and end nodes and station point spacing intervals. (A) Example of ‘fixed interval approach’, a fixed SP interval distance often used on high
order channels, applied to each stream order. (B) Example of SP intervals adjusted for each stream order and diagram of how geomorphic variables (vw= valley bottom width, cw =
channel width, S = slope) are extracted in the methodology developed in this paper. (C) Diagram showing how SP variables are related to planform adjustments (method part 3).
Continuous lines represent stable reaches (a, c), dashed lines indicate planform adjustments (b). Red dots indicate the SPs and the number indicates the station point ID. Stable reach a
is represented by the mean characteristics at SPs 1, 2, 3. Planform adjustment b is represented by the mean characteristics of SPs 3 and 4. Stable reach c is assigned the characteristics
of SP 4 as there are no downstream SPs due to the presence of the lake.
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and represents the total channel length of the stream in that order
(Fig. 2b). Local channel slope (m/m) is calculated at each SP. Elevation
values are extracted from the DTM at intervals upstream and down-
stream of the SP that scale with each stream order (e.g., (stream order
number – 1)*100)) to account for the variability in channel scale be-
tween the stream orders. Local valley bottom width (m) is measured at
each SP, perpendicular to the channel banks and identified by breaks
in slope along the distal edges of floodplains and terraces (Snyder and
Kammer, 2008; Fryirs and Brierley, 2010). It defines the potential extent
to which a channel can freelymigrate laterally across the floodplain and
therefore can define confined and unconfined channels (O'Brien et al.,
2019). Channel width (m) is defined as the active channel width includ-
ing bars and is measured at each SP perpendicularly from bank to bank
(Wishart, 2004). Bedrock and superficial geology are categorical variables
and are assigned locally to the observed river planform adjustments and
stable reaches in part 3 of the method. Local catchment area (km2) is
defined as the upstream contributing area of a SP based on the surface
topography from the DTM (Fig. 2b).

Based on themeasured geomorphic variables secondary data can be
calculated. For example, local catchment area is used to estimate dis-
charge using a discharge-area power relationship (Knighton, 1999):

Q ¼ a∙Ab ð1Þ

where A is the catchment area (km2) and a and b are empirical coeffi-
cients derived from a power function fitted to area-discharge data.
Many headwater catchments are ungauged, however, discharge data
from gauging stations in a study region can be used to generate a re-
gional catchment area-discharge relationship. For each gauging station
within the study area flow return periods are calculated and plotted
against their respective catchment areas to calculate regional a and b
coefficients.



Table 1
Example of 1D and 2D geomorphic variables that can be extracted from historic maps, air photographs, geologymaps and DTMs at different spatial scales, and the key processes they in-
dicate (modified from Gurnell et al., 2016).

Spatial unit Key process Data variable

Region
Water balance
Sediment production
Topographic conditioning (i.e., presence of mountains, lakes)

Climate data: precipitation (mm), discharge (m3 s−1)
Geology
Topography derived from DTM

Catchment
Runoff production / retention
Sediment production
Topographic conditioning (i.e., presence of mountains, lakes)

Climate data: precipitation (mm), discharge (m3 s−1)
Geology
Topography derived from DTM

River
Channel network structure

Flow and sediment regime (supply, transfer and deposition)

Stream order and channel dimensions: catchment area (km2), length (km),
river channel slope (m/m)
Discharge (m3 s−1), geology

Reach Planform adjustments (sediment regime)
2D Planform adjustments identified from historical datasets
Local slope (m/m), discharge (m3 s−1), channel width (m), unit (specific) stream power
(W m−2)

Geomorphic Unit Sediment regime
2D adjustments to channel bars (i.e., bar area reduction, reorganisation or accretion)
identified from historical datasets
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Unit specific stream power (W m−2) indicates river energy expendi-
ture and the potential for sediment transfer and planform adjustment
(Bagnold, 1966; Baker and Costa, 1987; Thompson and Croke, 2013;
Marchi et al., 2016; Martínez-Fernández et al., 2019). Specific stream
power is calculated using channelwidth and an area-discharge relation-
ship (Eq. (1)) for a region or catchment (Bagnold, 1966; Baker and
Costa, 1987):

ω ¼ ρgQS
w

ð2Þ

whereω is the unit specific stream power (Wm−2), ρ is the density
of water (kg m−3), g is the acceleration of gravity (m s−2), Q is the dis-
charge (m3 s−1), S is channel bed slope (m/m) and w is the channel
width (m). A return interval of 2 yr is commonly used forQ andω calcu-
lations, which reflects the discharge that approximates bankfull condi-
tions (Leopold and Wolman, 1957b; Dury, 1961; Hey, 1975; Harvey,
1977; Carling, 1988) and the potential for geomorphic work (Lisenby
and Fryirs, 2016; Marchi et al., 2016).

Flood events prior to instrumental records can be identified from the
analysis of historical documents (newspapers, historic accounts, etc.).
Using historic and gauged flow data the cumulative number of flood
events, following methodology of Pattison and Lane (2012), can be
used to identify flood-rich and flood-poor periods and link to the timing
and frequency of historic river planform adjustments.

Part 2B identifies the type of 2D planform adjustment along the
river network over a given time interval. The type of adjustment
(Fig. 3) is mapped as a polyline feature from the start to the end of
the adjustment so that its location can be related to SP geomorphic
variables and the length of the planform adjustment quantified.
Reaches with no observed 2D planform adjustment are mapped as
2D stable indicating a balance of sediment input and output. How-
ever, it is important to note that these rivers might be adjusting ver-
tically, which cannot be quantified in 2D analyses of historic maps
and air photographs.

Fig. 3 demonstrates the types of channel planform adjustments iden-
tified in alluvial rivers (Hooke, 1977; Schumm, 1985; Fryirs et al., 2009;
Lisenby and Fryirs, 2016). Planform adjustments are divided into four
categories based on the characteristic scale of each adjustment. The
four categories are not mutually exclusive and some adjustments may
occur in combination, for example, bend adjustments are associated
with the erosion of the outer riverbank and subsequent sediment depo-
sition on the inside bend forming channel bars (Hickin, 1978; Richards,
1982).

Boundary adjustments are associatedwith an alteration to the chan-
nel planformwhere the channel: avulses across the floodplain, generat-
ing a new, secondary or multiple flow paths (Allen, 1965; Nanson and
Knighton, 1996; Slingerland and Smith, 2004), switches from multiple
flow paths to a single flow path (Passmore et al., 1993), or is shortened
via cut offs causing channel straightening/realignment. Boundary ad-
justments can take place at the reach scale (i.e., cut off), or affect the en-
tire channel length (i.e., avulsion) (Slingerland and Smith, 2004). They
typically occur over a short time period (b1 yr), often during a flood
event (Jones and Schumm,1999), although they can also beprogressive,
occurring in response to continued erosion and deposition of sediment
(Stouthamer and Berendsen, 2001).

In contrast, channelwidth adjustments affect shorter lengths of river
channel. Here, width adjustments are defined where there is a major
change (N50%) in the channel width to avoid misrepresentation of
minor width adjustments caused by image scale-related effects. Bend
adjustments can occur via extension, expansion, translation enlarge-
ment, rotation or complex change (Hooke, 1977; Fryirs et al., 2009)
(Fig. 3). Bend and width adjustments can be progressive adjustments
or occur in response to a flood event. The development of bars in the
channel can cause width, bend or boundary adjustments or can be a re-
sponse to these adjustments (Fig. 3) (Leopold andWolman, 1957a). The
pattern and rate of bar adjustments can be a useful indicator of the sta-
bility of river channels (Church and Jones, 1982). Bar adjustments can
occur over short temporal scales, in response to an event (i.e., flood, val-
ley landslide) or be present in the channel for ~100 yr (Jackson, 1975;
Church and Rice, 2009). Bar adjustments are considered to bemore sta-
ble forms of adjustment inherent within the system when they occur
singularly (e.g., not in combination with another adjustment), com-
pared to boundary or major width adjustments that involve a change
to the position and 2D form of the channel on the valley floor
(Brierley and Fryirs, 2005b; Fryirs and Brierley, 2012).

The types of 2D planform adjustment outlined in Fig. 3 are readily
identified by comparing historic maps and air photographs. Therefore,
geo-referencing errors between historic maps and air photographs are
unlikely to significantly affect the categorisation of the adjustment
type or adjustment length.

2.3. Part 3: Analysis: linking planform adjustments and geomorphic
variables

The main outputs of Part 2 include: (a) channel and catchment
geomorphic variables at station points along the channel network,
and (b) 2D channel planform adjustment types and stability as
polyline features along the channel network for each time period.
Part 3 combines parts 2A and 2B to develop an understanding of
the key geomorphic variables influencing the types of planform ad-
justment and stability.

To link SP variables to adjustment and stable reaches the geomor-
phic variables of the SP upstream and downstream of the adjustment
or inactive reaches are averaged (Fig. 2c). For example, in Fig. 2c adjust-
ment b is assigned the mean geomorphic variables of SP 3 and 4. If an



Fig. 3. Schematic of planform adjustment types and definitions adapted from Brierley and Fryirs (2005a, 2005b) and Fryirs et al. (2009).
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adjustment or stable reach extends or lies between two or more SPs
then the average geomorphic variables are taken from all of the respec-
tive SPs (Fig. 2c). If an adjustment extends over the junction between
two stream orders (i.e., at tributary junctions), the mean geomorphic
characteristic variables are taken from the upstream SP and down-
stream SP. If the adjustment occurs downstream of the last SP
(i.e., upstream of a lake or waterbody) it is assigned the variables of
the last closest SP.
3. Case study

3.1. Part 1: Selection of region, assembly and pre-processing of data

To test this approach, the methodology is applied to the Wasdale
Catchment (45 km2, Fig. 4) in the Lake District, northwest England.
This upland catchment is strongly influenced by the geology, glacial his-
tory and climate with a dynamic fluvial system (Harvey, 1997). The
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present river planformconsists of straight low sinuosity first and second
order erosional bedrock channels, e.g., Piers Gill and Gable Beck (Fig. 4).
Downstream, depositional features dominate, and channels are uncon-
fined with wandering and braided planforms in the third, fourth and
fifth stream orders (Fig. 4C) (Harvey, 1997). A small debris cone is pres-
ent where Gable Beck joins Lingmell Beck and there is a large fan delta
where Mosedale and Lingmell Becks empty into the head of Wast
Water, which adjoins an alluvial fan of Lingmell Gill (Harvey, 1997).

The bedrock geology of the area consists of Ordovician Borrowdale
Volcanic Group rocks (Wilson, 2005). The superficial geology consists
of primarily fluvial deposits in the lower reaches of Mosedale Beck,
Lingmell Beck and Lingmell Gill (Fig. 4C). Glacigenic deposits
(Devensian till, diamicton) are found in the upper reaches and headwa-
ters of the river channels (Fig. 4). River channel sediments are generally
coarse, typically boulder gravels in the upper reaches fining to cobble
gravels downstream (Skinner andHaycock, 2004). Little evidence of an-
thropogenic modification exists in the low order channels in the head-
waters of the Wasdale catchment (Skinner and Haycock, 2004). In
contrast, evidence of straightening, embankments and walled river-
banks are present along the lower reaches of Lingmell Beck and
Mosedale Beck (Skinner and Haycock, 2004). Mosedale Beck and
Lingmell Beck are high energy systems and planform adjustments are
expected despite the anthropogenic modifications (Skinner and
Haycock, 2004).

Historic maps and air photographs with full coverage of the Wasdale
catchment are available from 1860s – 2010. Historic OS maps include the
Fig. 4. (A) Location of Lake District upland region, north-west England. (B) Wasdale catchment
identifiable from historic maps and air photographs (mainly first order channels). (C) Geology
rivers studied that are topographically confined or unconfined. (D) Example of 2010 air photo
indicated by dashed purple box in Fig. 4B and C.
years: 1867–68 (1:10,560); 1956–57 (1:10,560); 1974–1980 (1:10,000);
and air photographs: 1995 (Natural England, 0.25 m resolution), 2003–
04 and 2009–10 (source: © Bluesky International Ltd., 25 cm resolution),
(Table S1). Air photographs and historic maps were georeferenced in Esri
ArcMap GIS to an OS base map in British National Grid coordinates. Error
was assessed using the root-mean square error (RMSE) of the GCPs as
well as in 14 independent test points (local error) (Hughes et al., 2006).
A decrease in RMSE and test point error was observed between the
1860s map (RMSE = 2.6 m, test point error = 3.7 ± 2 m) and 2010 air
photograph (RMSE = 0.8 m, test point error = 1.4 ± 1.4 m) (Table S3).
A contemporary5mDTM(Digimap, 2017)wasused todefine thebaseline
stream order network in GIS.

3.2. Part 2: Characterisation of fluvial system and assessment of planform
evolution

Planform adjustments were mapped: (1) over the ‘full period’, by
comparing the oldest available map (1860s) of river planform to the
most recent (2010) full coverage air photograph, and (2) at higher fre-
quency intervals using intermediate dated historic maps and air photos
during the full period (‘intermediate periods’) (Table S1). Planform ad-
justments were mapped on second, third, fourth and fifth order chan-
nels. First order channels were not mapped as the resolution of air
photographs and historic maps meant the channels b1 m wide could
not easily be identified. First order channels are often topographically
confined in headwater catchments, with entrenched channels or
study area (45.4 km2) and channel network. Rivers not studied include those that are not
map of the Wasdale catchment showing the superficial geology (source: BGS, 2016), and
graph (Digimap, 2017) of channels in the Wasdale catchment. Area of air photograph is
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narrow valleys and therefore we expect to see minimal 2D lateral plan-
form adjustment in these channels over the period of measured change.
However, it is important to recognise thatfirst order channels can adjust
vertically and supply sediment to the downstream channel network.

The SPs in the Wasdale catchment (Fig. 4) were located at 400 m,
600 m, 800 m, and 1000 m intervals for second, third, fourth, and fifth
order channels, respectively. The spacing point interval was determined
based on analysis of three station point interval resolutions (Table S2,
Fig. S1). No statistical differences were observed between the three SP
interval resolutions at the 95% confidence level after ANOCOVA (Zar,
2010), therefore, we assumed that geomorphic variables extracted at
the lowest resolution SP interval (Table S2, Fig. S1) are representative
of the geomorphic variables for each stream order. Elevation values to
calculate channel slope were extracted 100 m, 200 m, 300 m and
400 m upstream and downstream of the SPs for second, third, fourth
and fifth order channels, respectively (Table S3, Fig. S2). The intervals
used to extract elevation values coincide with a similar range of previ-
ously used intervals (Alber and Piégay, 2011; Bizzi and Lerner, 2012;
Lisenby and Fryirs, 2016; Martínez-Fernández et al., 2019).

No discharge gauging stations are located in theWasdale catchment,
so to calculate streampower flowdata is combined from 19 flowgauges
across the Lake District upland region to produce a regional area-
discharge relationship (Eq. (2)) (Fig. S3). The 19 flow gauges chosen
have a minimum record length of 30 yr and capture a range of catch-
ment sizes (18–363 km2). Only three flow gauges occur upstream of
lakes, therefore, when using the gauges downstream of lakes it is as-
sumed that the lakes are full during bankfull flow (flood) conditions.
Values of unit stream power are calculated for the 2 yr return interval
flow as this is representative of bankfull discharge in gravel-bed rivers
in similar upland settings (Leopold and Wolman, 1957b; Hey, 1975;
Harvey, 1977; Carling, 1988; Harvey, 2001).

To understand the temporal pattern of planform adjustments and
the role of flood events during the 150 yr time period, gauged flow
data is linked to longer term events identified using historical descrip-
tions of major geomorphological events (i.e., landslides, changes of
stream course, or large scale damage to buildings etc.) (Watkins and
Whyte, 2008). Extreme flood events in the gauged data were identified
by using the peak-over-threshold (POT) approach (Robson and Reed,
1999). Previous studies have defined unique POT discharge values for
a catchment (i.e., Rumsby and Macklin, 1994; Pattison and Lane,
2012). However, because we are comparing peak events across 19
gauges, a single discharge value is not representative of the range of
catchment sizes. Instead,we set a high POT of 75% of the gaugedflow re-
cord. This threshold means only the largest flood events are used so the
dataset includes an average of 1 flood event per year across the gauged
records (Robson and Reed, 1999). To reduce bias in any catchment-
specific flood events identified in the gauge records, we remove peak
events that are not observed across N50% of the 19 flow gauges. The cu-
mulative number of flood events in the historical and gauged record is
plotted over time to generate an overview of flood-rich and flood-
poor periods across the Lake District upland region.

4. Results

4.1. Characterisation of the fluvial system

In total, 18 channels (total length = 24 km) were studied in the
Wasdale catchment, with a total of 63 SPs. There were eight second
order channels, seven third order channels, two fourth order channels
and one fifth order channel. The stream orders differ in length, steepness,
confinement (valley bottomwidth) and specific stream power reflecting
the longitudinal variation in the uplandheadwater channels (Fig. 5). Local
mean channel slope decreases from0.2±0.09 to 0.004±0.002 from sec-
ond to fifth order channels (Fig. 5). Channel width increases by a factor of
four downstream through the stream order network; second order chan-
nels have the narrowest mean channel widths (4 ± 2m) and fourth and
fifth order channels have the largest mean channels widths (16 ± 1 m).
Catchment area similarly increases from second order channels (mean
catchment area = 0.8 ± 0.4 km2) to fifth order channels (19 ±
1.5 km2) (Fig. 5). Mean valley bottom width increases by a factor of 18
downstream from 31 ± 43 m in second order channels to 550 ± 30 m
in fifth order channels (Fig. 5). Mean bankfull stream power decreases
by a factor of 25 downstream from 620 ± 305 W m−2 in second order
channels to 25 ± 8Wm−2 in fifth order channels (Fig. 5).

4.2. Planform adjustments

Planform adjustments in the Wasdale catchment are assessed
(1) over the ‘full period’ by comparing the earliest historic map and re-
cent air photograph, 1860s - 2010 (150 yr); and (2) at ‘intermediate pe-
riods’ at higher frequency intervals (1860s–1950s; 1950s–1980; 1980–
1995; 1995–2004; 2004–2010) during the 150 yr period.

4.2.1. Full period (1860s – 2010) results
Over the full period, 114 planform adjustments were identified

(Fig. 6A). The total length of channels mapped as stable was 68%
(16 km) and adjusting was 32% (8 km). Bar adjustments were the most
common forms of adjustment (n=68, 60%, Fig. 6A) and affected an aver-
age of 9% of the channel length (Fig. 7B). Themean percentage of channel
length affected by bend adjustments (n=19, 17%)was 6%; boundary ad-
justments (n= 12, 11%) was 17% and width adjustments (n= 15, 13%)
was 11% (Fig. 7). Thehighest frequency of planformadjustments occurred
in third order (n = 45, 40%) and fourth order (n = 48, 42%) channels
(Fig. 6A) where catchment area increases and channels become topo-
graphically unconfined (Fig. 5). The 2D stable reaches (n = 66) affected
an average of 20% of the channel length over the full period (Fig. 8).

Over the full period of analysis, 43 of the mapped planform adjust-
ments (38% of the total number of adjustments) occurred in combina-
tion with another planform adjustment type. Thirty percent of the
total combined planform adjustments were bar andwidth adjustments,
28% were bar and bend adjustments, 28% were bar and boundary ad-
justments, 5% were boundary and width adjustments, and 9% were
bar, boundary and width adjustment combinations.

4.2.2. Intermediate period results
In the shorter time interval comparisons, bar adjustments were the

most frequent planform adjustment observed (1980–1995, n = 56;
1995–2004, n = 86; 2004–2010, n = 178) (Fig. 6). Boundary adjust-
ments were observed in the 1860s – 1950s, and 1950s – 1980 interme-
diate time periods, however, these adjustments were absent after the
1980 period (Fig. 6).

A reduction in the mean percentage of channel length affected by
planform adjustments is observed over the stream order network in
the intermediate time periods (Fig. 7). Planform adjustments in 1860–
1950s and 1950s–1980 affected an average of 40% of the channel length,
whereas adjustments over the shorter time span intervals from 1980–
1995, 1995–2004 and 2004–2010 affected an average of 22–13% of
the channel length (Fig. 7). This coincides with a reduction of the occur-
rence of boundary adjustments from 1980 to 2010, which affected a
mean of 17% of the river channel length from 1860s – 1980 (Figs. 6
and 7).

Second order channels have the highest mean percentage of length
categorised as 2D stable over 1860s – 1950s (100%), 1980–1995 (47%)
and 1995–2004 (35%) (Fig. 8). Over the period of analysis there has
been a progressive reduction in the overall length of channel mapped
as stable (Fig. 8), this is likely caused by an increase in the frequency
of bar adjustments being mapped from 1980s onwards as a result of
the changing resolution and type of data source used.

Combined planform adjustments were identified in all of the inter-
mediate time periods. From 1860s–1950s, 33% (n = 15); 1950s–1980,
24% (n = 16); 1980–1995, 25% (n = 18); 1995–2004, 18% (n = 18)
2004–2010, 8% (n = 15) of river planform adjustments were



Fig. 5. Box plots showing the slope, catchment area, valley bottom width and unit specific stream power characteristics extracted from the station points for each stream order in the
Wasdale catchment. Statistically significant differences were identified between the mean of the geomorphic variables between each stream order at the 95% confidence level.
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overlapping. Themost frequently combined planform adjustments dur-
ing the intermediate periods were bend and bar adjustments (n=35).

4.3. Geomorphic variables of planform adjustment and stable reaches

To identify the key geomorphic characteristics influencing the loca-
tion and extent of planform adjustments, a comparison was made be-
tween the geomorphic variables extracted from the SPs and the
planform adjustment and stable reach data for all time periods (full pe-
riod and intermediate periods) (Fig. 9). In total, 1048 2D adjustment
and stable reaches were compared, of this frequency: bar adjustments
accounted for 42% (n=438); bend adjustments 7% (n=70); boundary
adjustments 3% (n=27); width adjustments 5% (n=49); and the fre-
quency of stable reaches was 44% (n = 464).

Stable reaches were found to have differences between plan-
form adjustment mean geomorphic variables over the full data
set (Table 2). Stable reaches (n = 464) had a mean channel width
of 8 ± 5 m, slope of 0.1 ± 0.08, local catchment area of 3.4 ±
3.3 km2, valley bottom width of 110 ± 157 m and bankfull unit
stream power of 424 ± 260 W m−2 (Fig. 9). The 2D stable reaches
were most commonly found in confined second order channels,
where bend and boundary adjustments are less likely because of limited



Fig. 6. (A) Frequency of planform adjustments by stream order, and (B) percentage frequency of planform adjustments in theWasdale catchment, UK, for the available historical maps and
air photographs (1860s – 2010).
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space for lateral adjustment (Fig. 9). Adjustment reaches (n=584) had
a mean channel width of 11 ± 5.6 m, slope of 0.08 ± 0.07, local catch-
ment area of 4.7 ± 4.1 km2, valley bottom width of 170 ± 194 m and
bankfull unit stream power of 325± 250Wm−2 (Fig. 9). Boundary ad-
justments occurred in unconfined valley reaches, where mean valley
bottom width is 430 ± 165 m, mean slopes are 0.04 ± 0.06, and
where there is a large mean upstream catchment area of 9.4 ± 6 km2

(Fig. 9). In contrast, bar adjustments were less restricted to uncon-
fined valleys and low slopes, occurring on mean valley bottom
widths of 145 ± 180 m and where mean slopes were 0.09 ± 0.08.

A one-way ANOVA and Tukey (HSD) was performed to identify if a
statistically significant difference between the mean geomorphic vari-
ables and the adjustment and stable reaches for each stream order
was present (Table 2). The fifth order channel was truncated by Wast
Water and was excluded from the statistical analysis because of its
short 590 m length and the small number of observed adjustments
(38, 4% of total of adjustments studied), therefore, results focus on the
ANOVA analysis of planform data for second, third and fourth channels.

Third and fourth order channels display the highest number of sig-
nificant differences (n*) (n* = 22) between adjustment types and the
geomorphic variables (Table 2) compared to second order channels
(n*=5). Secondorder channels have steeper channel slopes and higher
unit stream power values (Fig. 5), however, they are characterised by a
narrower range of values for catchment area (0.2–1.7 km2), channel
width (2–12 m) and valley bottom width (2–210 m) compared to
third and fourth order channels (Fig. 5). In confined, second order chan-
nels the space available for channel adjustment is restricted and there-
fore there are fewer significant differences between the geomorphic
variables and adjustment types (n* = 5) (Table 2).

In contrast, the geomorphic variables (catchment area, valley bot-
tom width, channel width) increase in third and fourth order channels
(Fig. 5) and display the highest number of statistically significant differ-
ences (n* = 22) between adjustment types and the geomorphic vari-
ables (Table 2). The highest number of statistical differences identified
in third and fourth order channel planform adjustments are associated
with valley bottom width (n* = 9) (Table 2).

The highest number of significant differences between geomorphic
variables and planform adjustmentswere between bar and boundary ad-
justments (n* = 7), and boundary and width adjustments (n* = 5) in
third and fourth order channels (Table 2). Bar adjustments in third and
fourth order channels occurred where mean valley bottom width was
145 ± 170 m, boundary adjustments occurred where the mean valley
bottom width was 430 ± 140 m and width adjustments occurred
where themean valley bottomwidthwas 240±220m. Boundary adjust-
ment frequencywas lower in second order channels because topographic
confinement limits lateral adjustment (Fig. 4C). The lowest number of sig-
nificant differences in second, third and fourth order channels identified
were between bend and bar adjustments (n*= 1) and bar andwidth ad-
justments (n* = 1); these adjustments often occurred in combination.
The combined data column (Table 2) suggest significant differences
were observed between most geomorphic variables, but the highest
number of statistical differences could be identified by differences in
channel width and valley bottom width (n* = 8); these statistical differ-
ences are concentrated in third and fourth order channels.

4.4. Flood-rich and flood-poor periods and the timing of planform
adjustments

To understand the temporal pattern of channel planform ad-
justments, we use archival and flow gauge information to identify
flood-rich and flood-poor periods (Fig. 10A). We identified five
flood-rich periods across the Lake District upland region that



Fig. 7. Mean percentage of channel length affected by planform adjustment by stream order (A) and mean percentage of channel length affected by planform adjustment (B) in the
Wasdale Catchment, UK, for the available historical maps and air photographs (1860s – 2010).
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correspond to previously reported flood-rich periods in northern
UK and northwestern Europe (Macklin and Lewin, 1998; Pattison
and Lane, 2012; Macdonald and Sangster, 2017) (Fig. 10A). Fig.
10A shows the regional pattern of flood-rich and flood-poor pe-
riods from 19 flow gauges in the Lake District, however, individual
catchments can be affected by local flood conditions. For example,
Johnson and Warburton (2002) reconstructed local historic flood
events using lichenometry in Raise Beck (NGR NY 330118, central
Lake District, ~ 15 km northeast of the Wasdale catchment)
(Fig. 10A). Three of the Raise Beck flood events coincide with the
Fig. 8.Mean percentage length of stable reaches for each time perio
regional flood-rich periods and three do not, highlighting local var-
iability in flood conditions (Fig. 10A). Because there are no flow re-
cords in the Wasdale catchment we can only use regional flood
data, but acknowledge there will likely be local differences in
flood histories between valleys.

Fig. 10B shows the average length of planform adjustments
types for each time period. Boundary adjustments were not ob-
served after the 1980s (Fig. 10B). The average length of channel af-
fected by bend and bar adjustments has been relatively consistent
over all time periods (Fig. 10B). Width adjustments affected a
d plotted against stream order for the Wasdale catchment, UK.



Fig. 9. Box plots showing the geomorphic variables for each planform adjustment category for all time periods. Continuous lines represent themean geomorphic value for stable reaches,
dashed lines indicate the mean geomorphic values for adjusting reaches.
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greater length of channel planform in 1860s–1950s, 1950s–1980
and 1980–1995 time periods (Fig. 10B). The mean percentage
length of stable reaches over time decreased ( Fig. 10B). The chang-
ing resolution of the map and air photographs, and the length of
Table 2
One-way ANOVA and Tukey (HSD) results showing statistically significant differences (at 95%
phic variables and streamorder. Dots indicate the presence of a statistically different relationship
is valley bottomwidth (m),ω is the 2 yr Return Interval Specific StreamPower (Wm−2). Combi
geomorphic variables with the highest number of statistically significant differences.
sampling interval over which planform adjustments are mapped,
will influence the type and frequency of adjustments identified.
For example, air photograph resolution (0.25 m) will enable
smaller adjustments to be identified (i.e., bar adjustments),
confidence interval p value b.05), between planform adjustments, stable reaches, geomor-
. S is local slope (m/m),A is local catchment area (km2),W is channelwidth (2010,m),VW
ned column represents analysis for all streamorders, green highlighted columns shows the



Fig. 10. (A) Cumulative number of high flow events as a function of time for the Lake District upland region. Peak flow data is based on documented extreme flood events from archival
evidence and gauged data (19 gauges) that represent POTflows.Where the gradient of the line is steep it indicates a high frequency of large flood events and flood-rich periods (red bars).
A local flood record at Raise Beck (NY 330118) from Johnson and Warburton (2002) is plotted against the regional flood record. (B) Mean length of channel affected by planform
adjustment (%) (height of grey bars is proportional) for each time period map / air photograph comparison. Grey bar length represents the time span between available map/photo
comparisons.
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reducing the length of channel categorised as 2D stable (Fig. 6).
Similarly, the length of historic map and air photograph sampling
interval decreases towards the present, which will impact the
number of recorded channel adjustments depending on whether
a flood-rich period falls between two observational epochs or not.
Despite these limitations, this is the best available catchment
scale data of 2D planform adjustments, stable reaches and historic
flood events over the 150 yr time period.
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5. Discussion

5.1. Catchment scale patterns and controls of 2D planform adjustment

In this paper, a systematic methodology to quantify historic 2D
channel planform adjustments, stable reaches and the associated geo-
morphic variables at the catchment scale has been developed and ap-
plied. Previous river planform adjustment studies have emphasised
the dynamic nature of upland river channels (Newson, 1989). In the
Wasdale catchment, a similar picture emerges with 32% of the total
channel network length classified as adjusting between 1860s-2010
(Fig. 11). Similar patterns of actively adjusting reaches have been iden-
tified in British rivers using historical sources (Ferguson, 1981). For ex-
ample, Lewin et al. (1977) identified that 25% of 100 randomly surveyed
channel reaches in Wales were adjusting over a period of 44–78 yr.
Hooke and Redmond (1989a) estimated that over an 89 yr period
(1870–1959), 35% of UK upland rivers experienced planform
adjustment.

The structure of a catchment, primarily determined by the geological
and glacial history, plays an important role in influencing sediment con-
tinuity and patterns of planform adjustment (Milne, 1983; Downs and
Gregory, 1993; Thomas, 2001; Sear and Newson, 2003; Fryirs et al.,
2009). In headwater catchments, low order channels are often topo-
graphically confined (Milne, 1983; Montgomery and Buffington, 1993;
Downs and Gregory, 1993) and have been termed ‘resistant’ or ‘insensi-
tive’ to planform adjustments (Brunsden and Thornes, 1979; Sear et al.,
2003; Fryirs et al., 2009; Thoms et al., 2018; Piégay et al., 2018; Fuller
et al., 2019). In theWasdale case study, second order channels were to-
pographically confined (mean valley bottom widths of 31 ± 43 m,
Fig. 5) and bar adjustments were themost frequent form of adjustment
(Fig. 6). The presence of bar adjustments can indicate the channels are
locally active in terms of sediment supply and transfer, and therefore
show little change to the channel boundaries over time (Fig. 6). One ex-
ception to this general resultwas observed inGable Beck, a secondorder
channel, where a local cut off andwidth adjustment (1950s – 1980) oc-
curred where valley bottom width expands and a small debris cone is
present, allowing the channel to become locally unconfined (Figs. 4C
and 11). Overall, however, topographically confined low order channels
displayed patterns of persistent 2D stability, indicating a high level of
sediment continuity and relative balance between sediment input and
output.

In contrast, downstream in high order channels in thefloodplain val-
ley transfer zone, valley bottomwidth increasesmarkedly (Fig. 5) creat-
ing space (Schumm, 1977; Church, 1996) for the channel to interact
with floodplains laterally (Ibisate et al., 2011). The highest frequency
of planform adjustments was observed in third to fifth order channels
(Fig. 6). The most active adjustment locations were observed in the
downstream reaches of Lingmell Beck (fourth and fifth order channels)
where mean valley bottom width was 410 ± 110 m, allowing room for
lateral planform adjustments. Lingmell Beck also had a lowmean chan-
nel slope 0.03±0.01, largemean catchment area 12±1.7 km2, and low
mean streampower 130±80Wm−2 (Fig. 5). Unconfined reaches with
low specific stream powers can accommodate sediment deposition
(Knighton, 1999; Reinfelds et al., 2004; Lea and Legleiter, 2016),
which can lead to local aggradation (poor sediment continuity) and
super-elevation of the bed in relation to the floodplains, which can insti-
gate larger scale adjustments such as avulsions (Jones and Schumm,
1999). This is evidenced by large depositional areas in the mid to
lower reaches of Lingmell Beck (Skinner and Haycock, 2004).

McEwen (1994) similarly identifies changes in river channel plan-
form stability along the River Coe, Scotland. In the upstream reaches,
the River Coe is relatively confined and stable, however, downstream
the channel floodplain valley, slope and stream power changes, and
the channel planform transitions to a wandering gravel-bed river
where the channel actively reworks the floodplains and sediment
aggrades in the channel (McEwen, 1994). The floodplain valley transfer
zone represents an important sediment source and store regulating sed-
iment continuity downstream over different timescales (Werritty and
Ferguson, 1980; Ferguson, 1981). Joyce et al. (2018) highlight the im-
portance of valley floodplains in storing sediment during extreme
flood events causing sediment attenuation at the channel outlet. In the
Wasdale catchment, persistent adjustment reaches over the last
150 yr indicate locations of continual sediment erosion and deposition
in the floodplain valley transfer zone. For example, where the channel
becomes unconfined in the mid to lower reaches of Lingmell Beck, re-
peated bar, bend and width adjustments were recorded in the interme-
diate periods of analysis (Fig. 11) and are evidenced by depositional
features (Skinner and Haycock, 2004). Sediment continuity can there-
fore be both discontinuous at the event scale and over much longer
timescales of measurable change (150 yr).

The statistical analysis investigated the importance of the different
types of river planform adjustment in relation to catchment geomorphic
variables (Table 2, Fig. 9). Valley bottomwidth and channel width could
be used to identify differences in stable reaches, bend, boundary, width
and bar adjustments across the catchment (Table 2). However, the anal-
ysis highlighted that not one geomorphic variable alone could be used
to define a particular type of river planform adjustment. This is because
planform adjustments occur in response to interactions ofmultiple geo-
morphic variables. Second, it is difficult to identify the geomorphic var-
iables of individual planform adjustment categories because planform
adjustments can occur in combination. Fig. 12 summarises the fre-
quency of interactions between planform adjustment categories in the
Wasdale catchment. In the full-time period analysis (1860s – 2010),
38% (n=43) of river channel planform adjustments identifiedwere co-
incident with another planform adjustment. Bar adjustments are the
most frequent type of adjustment and are associated equally with chan-
nel boundary, width and bend adjustments (Fig. 12). This result is to be
expected given that the bar can be regarded as the fundamental geo-
morphic unit in fluvial systems (Church and Rice, 2009; Rice et al.,
2009) and itsmorphodynamics indicate the state of sediment flux (con-
tinuity) within a particular river reach. This underpins the basis of the
methodology applied here.

5.2. Historic pattern of 2D river channel planform adjustment

The temporal pattern of river planform adjustments inmany upland
catchments has been linked to the incidence and severity of major
floods (Wolman and Miller, 1960; Anderson and Calver, 1980; Milne,
1982; McEwen, 1989; Rumsby and Macklin, 1994; McEwen, 1994;
Werritty and Hoey, 2004). High magnitude flood events can cause the
erosion of river banks, initiate high sediment transport rates, leading
to subsequent sediment deposition in the channel and on floodplains
as peak flows recede (e.g., Fuller, 2008; Milan, 2012; Joyce et al., 2018;
Heritage and Entwistle, 2019). Sediment deposition can block the chan-
nel promoting channel avulsion or chute and neck cut offs across the
floodplain (Anderson and Calver, 1980; McEwen, 1994; Jones and
Schumm, 1999). In the Wasdale catchment, boundary adjustments
(avulsions, cut offs) occurred between 1860s–1950s and 1950s–1980,
coinciding with four flood-rich periods in the Lake District region
(Fig. 10). No boundary adjustments were identified from 1980 to
2010, despite this being a flood-rich period documented across the
Lake District upland region (Fig. 10).

The relationship between the type and extent of planform adjust-
ments is complicated by the fact that channel response to floods can
vary from catchment to catchment (Warburton et al., 2002). First, the
lack of flow gauge records in theWasdale catchment limits the identifi-
cation of catchment specific flood events that drive planform adjust-
ments. Therefore, the lack of boundary adjustments observed after the
1980 period could be because there has not been a local flood of suffi-
cient magnitude for geomorphic adjustment. The Raise Beck flood
study (Johnson andWarburton, 2002) highlights that there is variability
in river response to localised flood events compared to the Lake District



Fig. 11. Spatial pattern and percentage length of stable and adjusting reaches for all time periods of analysis in the Wasdale catchment, UK.
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regional flood record (Fig. 10A). Recent work reconstructing detailed
flood chronologies from lake sediment records (Chiverrell et al., 2019)
andfloodplain sediment cores (Jones et al., 2012; Fuller et al., 2019) pro-
vides an alternativemeans of developing catchment flood histories that
are catchment specific and extend beyond the era of documented flood
events. Second, the lack of observed boundary adjustments after the
1980 period could be because the channels have stabilised and there-
fore we only see bend, bar and width adjustments (Skinner and



Fig. 12. Venn diagram showing the frequency of interactions between planform adjustment categories in the Wasdale catchment for the full period of analysis 1860s– 2010. Circles are
proportional to the number of observed primary adjustments. Numbers in bold show the total frequency of adjustments for each group, numbers in italics represent the total number
of combined adjustments between the groups.
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Haycock, 2004). Similar results were found in Hoaroak Water, Exmoor,
UK, where the channel showed relative stability and no major channel
planform alteration 25 yr after a flood-initiated avulsion (Anderson
and Calver, 1980; Werritty and Ferguson, 1980).

The temporal pattern of river planform adjustments is commonly
linked to anthropogenic activity (Gilvear and Winterbottom, 1992;
Surian and Rinaldi, 2003; Fryirs et al., 2009). Evidence of river straighten-
ing, embankments and bank reinforcements are present in the Wasdale
catchment (Skinner andHaycock, 2004). Skinner andHaycock (2004), re-
port straightening on Lingmell Beck occurred between the 1860s – 1899,
therefore planform adjustments (e.g., boundary and bar adjustments)
mapped over the 1860s–1950s could reflect channel recovery to artificial
confinement. However, it is difficult to determine the direct impact of an-
thropogenic activity, as there is not a precise date of when straightening
occurred, and there are different time intervals between historic sources
used to map planform adjustments. Anthropogenic activity and contem-
porary rivermanagement could explain the lack of boundary adjustments
observed after the 1980s period in theWasdale catchment. For example,
on Lingmell Beck the contemporary (~25 yr ago) construction of embank-
ments restricts 2D lateral adjustment and might explain reaches of rela-
tive 2D stability observed after 1995 period (Fig. 11) (Skinner and
Haycock, 2004). It is also important to recognise that channel modifica-
tions often pre-date the earliest available historic maps and channels
may still be responding to ‘legacy effects’ long after cessation of the an-
thropogenic activity (Wohl, 2015). Consequently, in this context, it is dif-
ficult to state whether the threshold for boundary adjustment occurrence
is the result of extrinsic controls (flood events, anthropogenic activity) or
as a result of endogenic controls (e.g., progressive planform adjustment
and gradient changes) that prime the reach before destabilisation
(Brewer and Lewin, 1998).

The use of historical sources for river channel change detection are
limited by the temporal availability of data and therefore should not be
interpreted as a ‘reference’ or ‘base’ of channel planform (Ferguson,
1977). Historic maps and air photographs are often a composite of multi-
ple datasets collected over months or years and therefore it is difficult to
determine a single date of production, so 2D channel activity is mapped
over ‘periods’, e.g., 1950s - 1980. Furthermore, the analysis of 2Dhistorical
channel planform often assumes that there is a linear or continuous
change in channel planformbetween any twohistorical data comparisons
(Lawler, 1993). However, channel planform adjustments can have differ-
ent responses over different time scales and can be short-lived (intransi-
tive), instantaneous, lagged, cumulative and progressive (Schumm and
Lichty, 1965; Chappell, 1983). Therefore, planform adjustments might
go unrecorded between two survey dates, or adjustments might be
misinterpretedwhen comparing unequal time periods between available
data (Ferguson, 1977). Instead, historical sources provide a useful record
to understand how contemporary channel planform has evolved relative
to the different dated historical data. This is demonstrated in theWasdale
catchment, where zones of persistent adjustment (e.g., Lingmell Beck)
and relative stability (Gable Beck, Over Beck) are identified over the pe-
riods of observable data coverage (Fig. 11); this is useful to identify
areas susceptible to future adjustment.

6. Conclusions

This paper presents a systematic catchment scale approach for quan-
tifying the spatio-temporal patterns of 2D river planform stability and
adjustment in response to exogenic forcing in an upland headwater
catchment. The main results of the approach applied in the Wasdale
case study show:

1. Marked contrasts were found between the geomorphic characteris-
tics of 2D stable and adjusting reaches. In the Wasdale catchment,
stable reaches (n = 464) had a mean channel width of 8 ± 5 m,
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slope of 0.1± 0.08, local catchment area of 3.4± 3.3 km2, valley bot-
tomwidth of 110± 157m and bankfull unit stream power of 424±
260 W m−2. Adjustment reaches (n = 584) had a mean channel
width of 11 ± 5.6 m, slope of 0.08 ± 0.07, local catchment area of
4.7 ± 4.1 km2, valley bottom width of 170 ± 194 m and bankfull
unit specific stream power of 325 ± 250W m−2

.

2. The 2D laterally stable reaches were concentrated in confined low
streamorder channels, whereas unconfined high stream order chan-
nels (fourth and fifth order channels) in thefloodplain valley transfer
zone, were identified as zones of sediment storage (discontinuity)
evidenced by a higher frequency of planform adjustments over the
150 yr study period.

3. Valley bottom width showed the greatest statistical difference for
identifying planform adjustment types in third and fourth order
channels and can be used to explain the location of boundary adjust-
ments. This highlights the importance of confinement through the
stream order hierarchy in influencing the accommodation space
available for planform adjustment and stability.

4. Boundary adjustments were identified in 1860s – 1950s and 1950s –
1980 and coincided with the occurrence of flood-rich periods deter-
mined from long-term archival and gauged flood records in the Lake
District upland region. After the 1980s no boundary adjustments
were observed despite the occurrence of flood-rich periods suggest-
ing the system has either (i) achieved local stability or a new equilib-
rium, (ii) has not been impacted by a flood of sufficientmagnitude, or
(iii) has been stabilised by anthropogenic modification restricting
lateral adjustment. Further analysis should explore the impact of an-
thropogenic modification and response of the system to future ex-
treme flood events.

The general methodology developed here can easily be applied to
other catchments with commonly available historic maps, air photo-
graphs and DTM data. Future research should explore if the spatial pat-
terns and controls of 2D planform adjustments are consistent across
multiple catchments in a region, or if they are catchment specific. This
will help identify relatively ‘active’ and ‘stable’ catchments that will in-
form a better understanding of sediment continuity, process-form be-
haviour, and aid with (i) the predictions of where adjustments might
occur in the future, and (ii) the identification of locations for manage-
ment or restoration priorities at a regional level.
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