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Abstract Although vegetation is present in many rivers, the bulk of past work concerned with modeling
the influence of vegetation on flow has considered vegetation to be morphologically simple and has gener-
ally neglected the complexity of natural plants. Here we report on a combined flume and numerical model
experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning,
into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three
depth-limited flow conditions (Reynolds number 5 65,000–110,000), plant dynamics were recorded through
high-definition video imagery, and the numerical model was validated against flow velocities collected with
an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14%
increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds
number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated
through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing
with Reynolds number. These results demonstrate the significant effect that the complex morphology of
natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient
to be calculated. Given the importance of vegetation in river corridor management, the approach devel-
oped here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

1. Introduction

Vegetation is abundant in rivers and has a significant influence on the hydraulic functioning of these sys-
tems. Over multiple spatial and temporal scales, vegetation can influence mean and turbulent flow fields
[Nepf, 2012a], flow conveyance [J€arvel€a, 2002], sediment dynamics [Sand-Jensen, 2003], and river form and
morphodynamics [Gurnell, 2014]. As such, vegetation is a key component in controlling the hydrodynamics
of aquatic ecosystems [Nikora, 2010].

At the reach scale, total channel resistance is the sum of its component parts, and therefore the flow resis-
tance imposed by vegetation must be quantified [Cowan, 1956; Kadlec, 1990]. A correct understanding of
vegetative resistance is therefore required for the prediction of conveyance. This is especially significant for
riparian and aquatic plant species that intermittently interact with floods [O’Hare et al., 2016] and are often
found as isolated plant stands located on riverbanks or midchannel bars [Gurnell, 2014]. Vegetation extracts
energy from the open channel flow, via the process of drag, which transfers energy from the mean flow to
heat and turbulence [Zong and Nepf, 2010]. The fraction of energy converted into turbulent kinetic energy
is driven by the ratio of form (pressure) to viscous drag, which depends on the plant morphology, biome-
chanics, and water velocity [Nepf, 1999]. For tensile plants, including many macrophytes, flow resistance is
mainly generated by viscous drag [Miler et al., 2012]. For riparian plant species, however, form drag
dominates over the viscous drag component [Nikora, 2010; V€astil€a and J€arvel€a, 2014] and can account for
90–97% of the total drag in turbulent flows [Lilly, 1967; Vogel, 1994; Stoesser et al., 2010].

Form drag is associated with flow separation and reattachment about the blockage, with the generation of
wake flows and shear-scale vortices [Nepf and Ghisalberti, 2008]. Although the flow structures generated in water
and wind flows are comparable (see review by Marjoribanks et al. [2014a]), for a given velocity the drag forces
experienced by aquatic plants are up to 25 times larger [Denny and Gaylord, 2002]. The ability of a hydrodynami-
cally loaded plant in water to reconfigure and minimize drag is therefore crucial, because the forces acting on a
flexible bluff body are significantly different from those acting on a rigid bluff body [Chapman et al., 2015].
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Flow through and around canopies of morphologically simple, single stemmed (or analog) plants have
been extensively studied in both field and flume settings [Finnigan, 2000; Sukhodolov and Sukhodolova,
2010; Nepf, 2012b]. Therefore, the three-dimensional mean and turbulent flow, plant motion, and drag are
all well understood [Ackerman and Okubo, 1993; Ghisalberti and Nepf, 2002; Ortiz et al., 2013] and can be pre-
dicted using validated numerical models [Tanino and Nepf, 2008; Stoesser et al., 2010; Kim and Stoesser,
2011; Marjoribanks et al., 2015]. However, for isolated plant stands that are morphologically complex, com-
parably little is known.

The understanding of flow through and around an isolated plant stand is challenging given the multitude
of stem and leaf scales involved with vegetal elements [de Langre, 2008; Albayrak et al., 2012, 2013; Luhar
and Nepf, 2013], the variation in plant morphology [Wilson et al., 2003], and the reconfiguration to minimize
drag during hydrodynamic loading [Vogel, 1994]. Together, these dynamic morphological factors add signif-
icant complexity to the problem of quantifying vegetative flow resistance [Kouwen and Unny, 1973; Aberle
and J€arvel€a, 2013]. V€astil€a and J€arvel€a [2014] showed that the total drag acting on a single plant is depen-
dent on its morphology, namely the leaf area and leaf area to stem area ratio. This determines the three-
dimensional mean flow around the plant, with Schoelynck et al. [2013] showing a 50–70% reduction of
incoming streamwise velocity behind an isolated Cleome platycarpa plant. Yagci et al. [2010] quantify this
‘‘dead zone’’ to extend approximately two projection diameters downstream of the plant on the horizontal
plane. However, velocity measurements were only recorded at the flume midline, so fail to provide a full
description of flow both through and around the plant. Siniscalchi and Nikora [2013] show that the trailing
end of aquatic plants experience greatest motion under flow; with instantaneous motions closely related to
the passage of large-scale eddies that interact with the entire plant [Siniscalchi and Nikora, 2012]. Such fluc-
tuations reveal the time-dynamic plant motion characteristics, but not the time-averaged characteristics
that describe plant posture, a requisite boundary condition for discretizing plants in high-dimensional
numerical models. Currently, therefore, no validated numerical models exist to predict three-dimensional
mean and turbulent flow around isolated plant stands.

The approach applied here assumes that vegetation is a dynamically moving porous blockage [Lane and
Hardy, 2002]. Its porosity comes from the fact that within a controlled volume, flow is able to pass through
individual plant elements (stems, leaves, etc.). Previously, vegetation has been represented as a porous
medium with a permeability [Papke and Battiato, 2013; Battiato and Rubol, 2014; Rubol et al., 2016]. Howev-
er, the volume is dynamic in that it interacts with flow forcing. As the flow strength increases, the plant will
reconfigure and as such the plant volume will decrease, thus pushing the stems closer together and
decreasing the porosity.

This paper reports on a combined flume and numerical model study of depth-limited flow around an isolat-
ed, submerged riparian plant at three different flow Reynolds (Re) numbers. The influence of Re number
was investigated by increasing the mean flow velocity whilst keeping flow depth constant. Initially, the
unstressed (no flow forcing) three-dimensional morphology of the plant was captured using terrestrial laser
scanning (TLS) following the methodology of Boothroyd et al. [2016a]. In the flume, flow velocities were
quantified through acoustic Doppler velocimeter (aDv) measured velocity profiles, while plant motion was
recorded and quantified through high-definition video imagery. This provided the necessary boundary con-
ditions and validation data to incorporate the plant (unstressed and stressed) into a computational fluid
dynamics (CFD) model by application of a mass flux scaling algorithm [Hardy et al., 2005].

This study enabled an examination of the feedbacks between flow and vegetation dynamics allowing us to:
(i) gain an understanding of time-dynamic and time-averaged plant motion characteristics; (ii) quantify the
three-dimensional mean and turbulent flow through and around an isolated, submerged riparian plant; (iii)
evaluate how well the numerical model can predict measured flow; and (iv) quantify the influence of time-
averaged plant posture on vegetative resistance, through the calculation of drag forces and drag coeffi-
cients, the Vogel exponent, and Manning’s n.

2. Methods

2.1. Plant Characteristics
The plant used in these experiments was the waxy leaved, evergreen shrub Hebe odora (Figure 1a) selected
to represent a characteristic riparian plant. H. odora was chosen for both ecological and practical reasons.
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Ecologically, Cockayne [1958] reports H. odora to be distributed across many river beds or near to streams
flowing through tussock grass land or fell field sites. The species is particularly widespread throughout New
Zealand, especially on flushed ground and stream banks [Wardle, 1991]. Practically, the shrub had a mea-
sured height of 0.22 m and a diameter of 0.20 m, therefore enabling complete submergence in the flume.
The open framework, and internal structure of stems/leaves that were not especially dense, allowed the
laser to penetrate into the plant interior and fully quantify the plant morphology in the unstressed state.
Furthermore, the ability not to deteriorate in a laboratory environment for the duration of the measurement
period (48 h) and the stable root ball which could be firmly attached to the base of the flume were further
reasons for selection of this particular species.

2.2. Terrestrial Laser Scanning (TLS) and Voxelization for Capturing Plant Morphology
A three-dimensional representation of the plant morphology under unstressed conditions (no flow forcing)
was acquired using terrestrial laser scanning (TLS), following the approach previously reported in Boothroyd
et al. [2016a]. A RIEGL VZ-4000 scanner was used to scan the plant. The scanner has a beam divergence of
0.15 mrad, a field of view 608 3 3608 and an effective measurement rate of up to 222 000 measurements
per second. Scans were collected at a distance of 5 m, with p and h increments set to 0.0158, controlling the
horizontal and vertical alignment, respectively. At this scanning distance, the mean distance between
neighboring points in the registered point cloud was 0.0024 m. The plant was scanned from four opposing
perspectives to minimize occlusion [Moorthy et al., 2008].

The registered point cloud was postprocessed and voxelized following the workflow of Jalonen et al. [2015].
The neighborhood based approach of Rusu et al. [2008] to classify outliers and remove erroneous point
returns was applied, where n 5 100 and r 5 1 (see Boothroyd et al. [2016a] for a full discussion). To simplify
and reduce the number of postprocessed points, while maintaining the plant morphology, a voxelization
procedure was applied (Figure 1b). A regular voxel size of 0.005 m adequately resolves plant morphologies
in comparable plants [Boothroyd et al., 2016b]. Furthermore, the voxel size is more than double the scan res-
olution, so ensured an adequate representation of the internal structure of the plant (Figure 1c). From the
voxelized plant representation, the areal and volumetric distributions are calculated along the x, y, and z
axes.

2.3. Flume Experiments
Flume experiments were undertaken in an Armfield S6 MKII glass-sided tilting recirculatory flume with a
0.3 m wide cross section and a length of 12 m. The working section was the central 2 m, unaffected by inlet
or outlet flows. The slope of the flume was adjusted to achieve constant local flow depth (0.29 m) in the
central working section (with uniform flow conditions). Experimental conditions are shown in Table 1. We
acknowledge that working at these width to depth ratios, there is the potential for wall-induced secondary

Figure 1. (a) Photograph of the H. odora plant used in the experiments, the white and red colored tips are targets used for tracking plant tips (Figures 2b and 3), (b) the voxelized plant
representation as discretized in the unstressed CFD model, with the dashed box indicting the position of slice (c), a section through the center of the plant, showing the internal structure
and porous blockage to flow.
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circulation although secondary flow
of this nature is typically less than a
few percent of the average flow
velocity [Colombini, 1993]. Further-
more, we acknowledge blockage
ratio effects, as the plant width is of
the same order as the flume width,
and this has previously been shown
to influence drag acting on sub-
merged macrophytes [Cooper et al.,
2007].

Velocity was pump-controlled, with the pump speed incrementally increased, providing measured inlet
velocities at 0.4 Z/h of 0.22, 0.30, and 0.37 m s21, respectively. In all experiments flow was fully developed
after the entrance region, turbulent (Re 5 65,000, 89,000, and 110,000) and subcritical (Fr 5 0.13, 0.18, and
0.22). The flume bed consisted of fabricated stainless steel, with a 1 m length of additional Perspex (0.01 m
thickness, smooth surface) fixed on the bed to attach the plant. The bed therefore provided a no-slip rough-
ness condition. The plant was positioned at the midline of the flume (0.5 Y/w), attached using a small cable
gland (0.024 m 3 0.024 m 3 0.017 m) milled into the Perspex sheet, to minimize any disturbance to the
flow field.
2.3.1. Measuring Flow Velocity
Velocity measurements were made to obtain inlet boundary conditions, and spatially distributed velocity
validation data. Velocities were collected using acoustic Doppler velocimeters (aDv) in three orthogonal
directions that correspond to the streamwise (u), spanwise (v), and vertical (w) velocity components. For
inlet boundary conditions, a Sontek 16-MHZ Micro aDv was mounted 1 m upstream from the plant, at 0.5
Y/w, 0.4 Z/h. The Sontek Micro aDv collected velocity measurements with a 0.05 m (nominal) fixed distance
to the remote sampling volume (<0.01 m3). The aDv has a reported accuracy of 0.0025 m s21 6 1% of the
measured velocity [Sontek, 1999]. Inflow measurements were made for the entire �2.5 h duration of the
experimental runs.

Downstream of the plant, a Nortek Vectrino-II Profiler aDv was mounted on a moveable carriage and used
to collect downstream velocity profiles, each composed of six 0.035 m high subprofiles centered at 0.5 Y/w.
A streamwise spacing of 0.125 m was selected for the first five profiles, and 0.25 m thereafter so that the
wake zone was fully measured, giving six profiles in total. The measurement volume of the Vectrino-II is dis-
placed 0.04 m below the transmit transducer, meaning that sampling was limited to within �0.06 m of the
water surface; therefore, velocity profiles capture �0.7 Z/h. The Vectrino-II has a reported accuracy of
0.001 m s21 6 0.5% of the measured velocity [Nortek, 2012]. Cumulative variance associated with different
time-averaging windows was used to test for stationarity in the velocity signal, with a 120 s record length
sufficient for systematic convergence [Sukhodolov and Rhoads, 2001].

Postprocessing of the aDv data followed the recommendation of Thomas and McLelland [2015]. Initially,
two-dimensional phase unwrapping or dealiasing was undertaken applying the two-step noncontinuous
quality-guided path (TSNCQUAL) algorithm [Parkhurst et al., 2011]. Next, the phase-space filter of Wahl
[2003] was applied to reduce the number of spikes resulting from Doppler noise or phase difference ambi-
guities [McLelland and Nicholas, 2000]. Finally, a noise analysis threshold of Zedel and Hay [2010] was
applied, with the threshold set as a confidence interval of 99.9%. The time-averaged velocities presented
herein were computed using only the data retained after dealiasing and filtering.

A weakness of the Vectrino-II aDv is that the signal-to-noise ratio (SNR) is not constant over the 0.035 m pro-
filing distance, and in some cases this can lead to discontinuous mean velocity profiles when subprofiles
are placed on top of one another and stacked [MacVicar et al., 2014]. Consequently, Brand et al. [2016] show
mean velocities from the upper 0.025 m of subprofiles to be the most reliable. Sensitivity to the distance
away from the transducer is heightened when analyzing turbulence statistics [MacVicar et al., 2014; Brand
et al., 2016]. In this study, subprofiles were overlapped by 10%, and the extremities of overlapping subpro-
files averaged to reduce the artifacts introduced at the periphery of the measurement footprint. This mini-
mized any discontinuous effects on the mean velocity, thus maintaining the spatial coverage necessary to
resolve fine-scale flow structures and enable comparisons with high-resolution CFD predictions.

Table 1. Hydraulic Conditions and Plant Geometries for Each Flume Experiment

Experimental Conditions

Experiment Number

1 2 3

Reynolds number 65,000 89,000 110,000
Upstream velocity (m s21) 0.22 0.30 0.37
Water depth (m) 0.29 0.29 0.29
Froude number 0.13 0.18 0.22
Mean plant height (m) 0.20 0.19 0.18
Mean plant length (m) 0.16 0.17 0.18
Lead angle from upright at plant front (8) 8.5 13.1 16.4
Lee angle from upright at plant back (8) 5.0 7.3 10.3
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2.3.2. Measuring Plant Motion Dynamics
To monitor the time-dynamic and time-averaged plant motion characteristics, a high-definition video cam-
era with a 1440 3 1080 pixel resolution was fixed perpendicular to the plant on the outside of the flume.
The video camera was focused on the plant, and a photogrammetric target attached to the outside of the
flume for spatial scale. Video was recorded at 25 Hz, which in postprocessing far exceeded the resolution
required to capture the plant motion (see section 3.3).

Individual image frames from the video were extracted and corrected for distortion [Wackrow et al., 2015].
To relate the size of pixels in the image space to measured distances on the photogrammetric target, the
image-scale factor (ISF) was quantified [Wackrow et al., 2015]. This was completed by measuring the pixel
distance on the photogrammetric target in the undistorted image space, and comparing this to the real dis-
tance in the object space. As such, pixels in the undistorted image frames are related to measured distan-
ces, enabling characteristics such as plant height and length to be determined with 60.005 m
measurement error.

To distinguish between plant versus water pixels, frames were converted into a binary plant image, by
applying the Otsu [1979] image classification algorithm (Figure 2). Isolating the blue band of the RGB image
space, a standard image processing technique was used to reduce the gray-scale image into a binary image,
by calculating the global threshold using the method of Otsu [1979]. Following Hardy et al. [2011a], the
binary images were postprocessed to remove any isolated, spur, or H-connected pixels, with disconnected
areas containing less than 50 pixels assumed to be flume debris and removed. Similarly, holes in the binary
image were filled, with the final binary image for each frame detailing the outer extent of the plant
(0 5 unoccupied, 1 5 occupied, Figure 2).

Figure 2. Stages in the workflow developed to automatically generate a binary plant image from: (a) the undistorted image following cam-
era calibration, allowing (b) isolation of the blue component of the RGB color space, whereby (c) an Otsu [1979] image threshold has been
applied, and (d) postprocessed. The white and red colored tips visible in Figures 2a and 2b were used for time-dynamic plant motion char-
acterization (Figure 3), selected at three distinct locations across the plant body (1 5 uppermost front, 2 5 uppermost back, 3 5 middle).
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When investigating the time-dynamic and time-averaged plant motion characteristics, the full range of
plant motion must be represented. By extracting and detrending the time series of plant height from the
binary plant images, fast Fourier transform (FFT) was used to isolate the dominant frequencies of plant
motion, shown by the peak in power spectral density (0.042, 0.058, and 0.147 Hz). A binary image time
series sample of 25 s therefore represents the full cycles of plant motion at each Re.

To investigate the time-dynamic plant motion characteristics at the finest spatial scale, tracks of the cent-
roids from isolated plant tips are monitored. Plant tips are selected at three distinct locations across the
plant (1 5 uppermost front, 2 5 uppermost back, 3 5 middle, Figure 2b), and displayed as time-dynamic
tracks that represent two-dimensional motion in the downstream and vertical (Figure 3).

The time-averaged plant posture is quantified by calculating the mean position of the plant from the binary
images over the cycle of plant motion. This is displayed as a relative probability, where a probability value
of 1 indicates that the pixel was constantly occupied, and a probability of 0 indicates no occupancy
(Figure 4a). To highlight zones of time-averaged plant motion, a transition frequency matrix was

Figure 3. Time-dynamic plant motion characterized by the tracked positions of the plant tips for Re 5 65,000 (column 1), Re 5 89,000 (col-
umn 2), and Re 5 110,000 (column 3) for tip 1 (row 1), tip 2 (row 2), and tip 3 (row 3) from Figure 2b. The mean position of each tip over
the 25 s time series is plotted as a black square. Time (t) is normalized by the length of the time series (T).
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Figure 4. Time-averaged plant position for Re 5 65,000 (row 1), Re 5 89,000 (row 2), and Re 5 110,000 (row 3), showing (a) the probability
of individual pixels being occupied through time (column 1), and (b) the fraction of time transitions occur (column 2), highlighting zones
of greatest motion on the upper and leeward sides.
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constructed using the sequence of binary values in each pixel. By concentrating on transitions from 0 to 1,
or from 1 to 0, it is possible to detect the zones which were intermittently occupied, and therefore represent
motion. This is displayed as fraction of the binary time series where transitions occur (Figure 4b), with a
greater fraction indicating comparably more plant motion.

2.4. Unstressed and Stressed Plant Representations
The unstressed plant representation is discretized directly from the voxelized point cloud, and herein
referred to as the unstressed model. For the stressed plant representation, the time-averaged plant pos-
tures are used as boundary conditions to inform the discretization of the plant for the stressed model.
For this, the unstressed voxelized representation is equally sliced at 0.02 m intervals along the vertical
axis, and these slices are incrementally translated to match the time-averaged plant posture in the mod-
el coordinate system under increasing Re. No translation occurs in the spanwise direction, with posture
only shifted in the vertical and streamwise directions. The approach ensures that the number of voxels
remains constant between unstressed and stressed plant representations, but the porosity and void
spaces are reduced as the plant is vertically compressed, altering the volumetric canopy morphology.
We acknowledge that plant reconfiguration is a three-dimensional process and that the spanwise thick-
ness of the plant is likely to change under flow, further altering the volumetric canopy morphology, and
reducing the porosity.

2.5. Incorporation of Unstressed and Stressed Plant Representations Into a CFD Model
The CFD model solves the full three-dimensional Navier-Stokes equations discretized with a finite-volume
method. Simulations were run by applying a two-equation j-e turbulence model, modified using Renormali-
zation Group Theory (RNG) [Yakhot and Orszag, 1986]. This model has been shown to outperform the stan-
dard j-e turbulence model in regions of high strain, flow separation, and reattachment [Yakhot and Orszag,
1986; Lien and Leschziner, 1994; Hodskinson and Ferguson, 1998; Bradbrook et al., 2000] and has been widely
adopted in geomorphological CFD applications [Marjoribanks et al., 2016]. It is applied here due to the large
degree of fluid strain that is associated with the shearing of flow around the plant. Furthermore, no modifi-
cation has been applied to the turbulence model for either bed and domain sidewalls, which were treated
as a no-slip boundary, and the nonequilibrium wall function is applied which assumes local equilibrium of
turbulence (y1 5 47) [Launder and Spalding, 1974].

The differencing scheme used was hybrid-upwind, where upwind differences are used in high-convection
areas (Peclet number> 2) and central differences are used where diffusion dominates (Peclet number< 2).
The pressure and momentum equations are coupled by applying the SIMPLEST algorithm [Patankar and
Spalding, 1972], where the velocity field was solved using the momentum equation followed by a pressure cor-
rection to solve the mass equation, ensuring a divergence-free velocity field. Weak linear relaxation was used
for the pressure correction, while false time step relaxation was used for the other variables. The convergence
criterion was set such that the residuals of mass and momentum flux were reduced to 0.1% of the inlet flux.

The model domain was designed to replicate the working section of the flume; 400 cells long, 60 cells wide,
and 59 cells high (1,416,000 grid cells) created with a spatial resolution of 0.005 m. Inlet velocity was set to
match the bulk inlet boundary conditions measured using the inlet aDv (0.22, 0.30, and 0.37 m s21, Table 1),
with a turbulent intensity of 5%. The outlet was defined with a fixed-pressure boundary condition where
mass is allowed to enter and leave the domain.

The unstressed and stressed plant representations are read into the numerical model using a mass flux scal-
ing algorithm (MFSA) [Lane et al., 2002, 2004; Hardy et al., 2005] representing the plant as a numerical poros-
ity [Marjoribanks et al., 2014c; Boothroyd et al., 2016a; Marjoribanks et al., 2016]. The approach we apply here
has previously been reported by Marjoribanks et al. [2016] where the MFSA accounts for the blockage creat-
ed by the plant. No additional drag force term is needed because the plant is explicitly represented through
a grid-scale blockage, so wall conditions are automatically set at the edge of each blocked cell. As such, the
finite volume continuity equation takes the form

fp5

P
k ak fk

ap1S
; (1)
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where f is the variable of interest (u,v), p represents the value at the cell center, the index k represents the
values at neighbouring cell centers and the previous time step, and S is the linear source coefficient. The
neighbor links (ak ) have the form

ak5Ak/qu1D1T ; (2)

where Ak is the cell-face area, / is the cell-face porosity, q is the fluid density, u is the local velocity perpen-
dicular to the face, D is the diffusion term, and T is the transient term. To introduce the MFSA, the value of
/ is calculated for each face according to the presence of vegetation. This information comes straight from
the voxelization procedure and follows a binary occupied/unoccupied porosity, as the 0.005 m voxel size is
equal to that of the 0.005 m grid cell size. The numerical grid was defined with vertices that are exactly col-
located with the voxelized representation, meaning that the voxelized plant maps directly onto the grid
cells (having equal density), and therefore a binary blocked/unblocked porosity treatment follows [Lane
et al., 2004]. This means that all permeability through the plant is explicitly represented through the grid-
scale blockage. Were the numerical porosity nonbinary, the drag force implemented as a momentum sink
term would be required to account for permeability. The plant, represented as the voxelized blockage, is
incorporated 0.35 m downstream from the inlet (0.175 X/l), and centered in the domain (0.5 Y/w). The com-
putational domain is shown in Figure 5.

2.6. Evaluation of Numerical Predictions Against Measured Data
The general agreement of velocity profiles between measured and modeled data are first quantified. Veloci-
ty profiles were selected to cover the entire downstream range of wake separation and reattachment. Each
of the measured velocity profiles consists of 195 points at a 0.001 m spatial resolution, therefore covering
�0.7 Z/h due to sampling constraints near the surface. For the modeled velocity profiles, the 59 points at a
0.005 m spatial resolution were linearly interpolated to the 0.001 m spatial resolution of the measured data,
meaning that point densities between the data sets were equal. To quantify the general level of agreement,
it is necessary to consider both the degree of scatter and the degree of bias in the data. This was analyzed
using the correlation coefficient (r) and the slope (b) obtained from reduced major axis (RMA) regression.
RMA was selected to reflect the expected uncertainty on both the dependent and independent variables
[Hardy et al., 2003], as both velocity data has uncertainty, and this is especially relevant given the known
data quality issues surrounding the Nortek Vectrino-II Profiler aDv. Following this, we quantify differences
between measured and modeled profiles through the root-mean-square error (RMSE) and mean absolute
error (MAE).

To assess in detail the agreement between measured and modeled data, a shape-based similarity statistic is
used to calculate the visual distance (dV) between velocity profiles. The dV statistic was first proposed by
Marron and Tsybakov [1995] in the context of qualitative smoothing, with the distance measure analogous
to that detected by the naked eye. The closer the dV value to zero, the greater the similarity between veloci-
ty profiles. The dV statistic therefore accounts for the minimum Euclidean distances between points on
curves/profiles in both the horizontal and vertical directions, following the removal of scaling (see Minas
et al. [2011] for overview). Conventional distance based methods, such as the area between curves, only
compute the distance in one direction, and therefore do not truly capture the notion of shape [Minas et al.,
2011].

Figure 5. Diagram of the computational domain, showing the position of the voxelized plant. The blue arrow demonstrates flow direction.
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3. Results

3.1. Plant Motion Dynamics
To investigate the time-dynamic plant motion, the centroid of three isolated plant tips (Figure 2b) are
tracked through the binary image time series (Figure 3), with the mean position of each tip shown.
Throughout the 25 s sampling period, an approximately linear motion track is detected at each of the plant
tips. However, the individual motion tracks at different positions across the plant body show different
movement extents and characteristics of motion (note differences between Tip 1 and Tip 2 at Re 5 110,000),
suggesting that individual tips are not moving simultaneously, and that this could be a reaction to the flow.
With increasing Re, the maximum downstream extent of motion remains similar (�0.01 m), but the maxi-
mum extent of vertical motion increases (from �0.0075 to �0.02 m at Tip 2, the uppermost back position).
The plant tips therefore begin to follow a more steeply inclined trajectory with increasing Re. Divergence
from a 1:1 ratio between downstream and vertical movement extents, and the more pronounced variation
about the motion tracks at higher Re, imply a transition in the oscillation regime as the plant reacts to the
increased flow. These different movement extents and characteristics of motion result from differences in
the internal plant structure, specifically the branch structure, which leads to different exposures to the flow
and implies different natural frequencies of movement. Although these time-dynamic plant motions are
only highlighted for three isolated plant tips, differences in motions are demonstrated across the extent of
the plant body, meaning that over the whole plant, the potential range of movement is likely to be large.

Changes in the time-averaged plant posture with increasing Re are shown in Figure 4, detailing the mean
position of the plant (Figure 4a), and the zones where greatest plant motion is detected (Figure 4b). The
plant is clearly deflected and vertically compressed when stressed, with the plant positioned lower in the
flow depth and slightly shifted further downstream. Compared to the unstressed state, the mean plant
height is lowered by 6.4, 11.2, and 17.7% with increasing Re. In contrast, the mean plant length increased
by 4.8, 9.8, and 14.4%. This demonstrates that as the time-averaged plant posture is shifted under the con-
stant flow, the plant is vertically compressed and reduces the volume. In doing so, this causes a reduction
of the volumetric canopy morphology, and a reduction in the plant porosity, causing more flow to pass
around the blockage. The postural changes influence the lead angle at the plant front and lee angle at the
plant back, both of which are measured from the upright (Table 1). The lead angle is consistently greater
than the lee angle (>3.58) throughout the Re range, and as Re increases from 65,000 to 110,000, both lead
and lee angles are shown to more than double, again indicating a Re dependence.

Time-averaged plant motion is highlighted through the fraction of time occupied by transitions in the bina-
ry time series image sequence (Figure 4b). Regions of greatest motion are shown by thicker zones around
the plant extent, and tend to be positioned on the upper and leeward sides of the plant body. As Re
increases from 65,000 to 89,000, the area of the transition zones increases by 12.7%; with a further 1.4%
increase in area as Re increases from 89,000 to 110,000. Due to biomechanical constraints, it is expected
that there will be an upper limit as to how much the plant can reconfigure, and because of this, the amount
of change will be initially large but then decrease with increasing Re.

Traditionally, the spectrum of vegetation canopy motion in response to increasing flow speeds can be cate-
gorized into four distinct regimes; erect, gently swaying, strong coherent swaying (monami, or vortex-
induced vibrations for the case of a single plant), and prone [Nepf and Vivoni, 2000]. Here, however, the
time-dynamic and time-averaged plant motions vary across the single plant body. The time-averaged plant
motion indicates that the plant has shifted its general posture, associated with static reconfiguration and
streamlining to the mean flow [Sand-Jensen, 2003; Siniscalchi and Nikora, 2013]. Dynamic reconfiguration is
related to smaller-scale oscillations, associated with the instantaneous flow and correlated with drag fluctu-
ations and upstream turbulence [Siniscalchi and Nikora, 2013]. For a single plant, a combination of the four
motion regimes can therefore occur simultaneously at a constant flow speed. This is because of the range
of biomechanical properties in the plant, and the influence of the plant on the local flow conditions [Hurd,
2000]. There will be different stem widths, lengths, thicknesses, and flexural rigidities throughout the plant,
and therefore the drag force will affect each component differently, resulting in a range of responses to the
flow. This is not a random process with respect to time and space. Some parts of the plant will respond to
the flow first, while other parts of the plant will take longer to readjust and reconfigure. The ability to recon-
figure to the changing flow stress will therefore vary over the plant body.
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3.2. Velocity Profiles
To investigate the general agreement between the measured and modeled time-averaged velocity pro-
files, results from the RMA regression are shown (stressed model in Figure 6; correlation coefficient (r)
and slope (b) of unstressed and stressed models in Table 2). For the u velocity, a good level of agree-
ment is found with the stressed model, showing r values of 0.80, 0.87, and 0.92 with increasing Re.
These are consistently higher than the r values with the unstressed model. For the v and w velocities,
the r values are higher with the unstressed model, although the magnitude of these velocities is small
(<0.05 m s21). The correlation coefficients compare favorably with previous applications of CFD to
velocity profiles in open channel flows [Ferguson et al., 2003; Lane et al., 2004; Hardy et al., 2005, 2011b;
Sandbach et al., 2012], and therefore demonstrate a very good general agreement between the mea-
sured and modeled data.

Figure 6. A comparison between the measured and modeled streamwise (u), cross-stream (v), and vertical (w) velocity components for (a) Re 5 65,000, (b) Re 5 89,000, and (c)
Re 5 110,000. Dashed line indicates the 1:1 line, red solid line indicates reduced major axis (RMA) regression. Slope (b), and the correlation coefficients (r) are shown in Table 2. Note
different y axis scales for the v and w velocities.
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The slope of the RMA regression is generally lower than unity for the u and w velocity, suggesting an overall
model under-prediction for these velocity components. For the w velocity, the unstressed CFD model
results in an under-prediction, and the stressed CFD model results in an overprediction. The stressed plant
representation reflects the flow-induced shift in time-averaged plant posture, with this vertical compression
of the volumetric canopy morphology responsible for generating a larger w component of flow.

To further quantify the differences between the measured and modeled data, the root-mean-square error
(RMSE) and mean absolute error (MAE) are calculated, and the mean average of these errors over the six pro-
files displayed (Table 3). Although both the unstressed and stressed models represent the measured values
well, with maximum RMSE of 0.072, 0.020, and 0.017 m s21, and MAE of 0.059, 0.016, and 0.015 m s21 for the
u, v, and w velocities; errors are consistently lower for the u velocity in the stressed CFD model. For v and
w velocity, errors remain very small (<0.02 m s21) for both the unstressed and stressed CFD models. Relating
this back to the general agreement of velocity profiles from the RMA regression (Figure 6 and Table 2), these
very small errors are associated with low-magnitude velocity values (<0.05 m s21), implying that minor discrep-
ancies between measured and modeled data result in relatively large differences in the correlation coefficients.

To understand the specifics of the u velocity profiles, Figure 7 shows profiles of measurements and both
unstressed and stressed models in the downstream region 0.25–0.625 X/l. An obvious agreement in the
overall profile shape between the measured and modeled data is visible. In the measured and both of the
modeled profiles, a zone of reduced velocity in the plant wake exists in the range 0.25–0.375 X/l. For the
unstressed model, velocities in this wake zone appear more uniform and gradually transition from low to
high, whereas for the stressed model more velocity fluctuations are shown (Figure 7c at 0.25 X/l). Velocity
minima in the low-velocity zone are better represented by the stressed model, with a maximum difference
in minima of 60.037 m s21 against the measured profiles over the entire Re range, compared to 60.049 m
s21 with the unstressed model. Beneath 0.2 Z/h, a zone of flow acceleration associated with subcanopy flow
in the near-bed region is measured and modeled, although the model consistently fails to capture the mag-
nitude in the velocity peak. With increasing distance downstream, velocity profiles show signs of recovery,
reverting toward a fully developed profile.

To quantify the shape-based similarity between these profiles, the visual distance statistic is calculated and
displayed (Figure 7). The closer the dV statistic to zero, the greater the similarity in shape between the mea-
sured and modeled profiles [Marron and Tsybakov, 1995; Minas et al., 2011]. Proximal to the plant (0.25–
0.3125 X/l) where the velocity profiles are most heterogeneous, when the visual distance statistics are

Table 2. The Reduced Major Axis (RMA) Regression of Slope (b), and the Correlation Coefficients (r) Between Experimental Data and the
Numerical Model Predictions for the (i) Unstressed Plant Posture and (ii) Stressed Plant Posture

Plant
Representation Velocity Component

Re 5 65,000 Re 5 89,000 Re 5 110,000

r RMA (b) r RMA (b) r RMA (b)

(i) Unstressed u 0.776 0.85 6 0.02 0.843 0.90 6 0.02 0.897 0.92 6 0.01
v 0.426 1.38 6 0.04 0.626 0.94 6 0.02 0.631 0.80 6 0.02
w 0.489 0.83 6 0.02 0.518 0.79 6 0.02 0.576 0.78 6 0.02

(ii) Stressed u 0.797 0.74 6 0.01 0.872 0.70 6 0.01 0.921 0.80 6 0.01
v 0.326 1.01 6 0.03 0.203 0.71 6 0.03 0.229 0.57 6 0.02
w 0.225 1.56 6 0.06 0.159 1.47 6 0.06 0.339 0.79 6 0.03

Table 3. The Root-Mean-Square Errors (RMSE) and Mean Absolute Errors (MAE) Calculated for the Experimental Data and the Numerical
Model Predictions for the Streamwise (u), Spanwise (v), and Vertical (w) Components of Velocity for the (i) Unstressed Plant Posture and
(ii) Stressed Plant Posture

Velocity Component

Re 5 65,000 Re 5 89,000 Re 5 110,000

(i) Unstressed (ii) Stressed (i) Unstressed (ii) Stressed (i) Unstressed (ii) Stressed

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

u (m s21) 0.049 0.042 0.044 0.037 0.062 0.053 0.053 0.043 0.072 0.059 0.055 0.043
v (m s21) 0.010 0.007 0.009 0.006 0.011 0.009 0.015 0.012 0.015 0.011 0.020 0.016
w (m s21) 0.009 0.008 0.012 0.011 0.012 0.010 0.017 0.015 0.013 0.011 0.013 0.011
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averaged over the entire Re range, the shape of the stressed model (dV 5 0.67), are more similar than the
unstressed model (dV 5 0.70) to the measured profiles. When all of the visual distance statistics are averaged
over the entire Re range, the shape of the velocity profiles from the stressed model (dV 5 1.04) are again
more similar than the unstressed model (dV 5 1.06), to the six measured profiles. Velocity profile shape is
therefore better modeled closer to the plant. Overall, given the closer general agreement and similarity in
profile shapes of the stressed CFD model for the u velocity, and the smaller quantified errors of the v and
w velocity, we argue that the stressed model is more representative and more able to predict three-
dimensional mean flow than the unstressed model.

Next, we examine the spatial patterns of the u velocity difference between the measured and stressed mod-
eled data (aDv-CFD), and the cumulative difference over the six profiles, to investigate areas of model under

Figure 7. Time-averaged streamwise velocity profiles for (a) Re 5 65,000, (b) Re 5 89,000, and (c) Re 5 110,000 comparing the measured aDv data (black dashed) to the CFD model with
the unstressed CFD model (red) and stressed CFD model (blue) for six profiles in the range 0.25–0.625 X/l. Velocity profiles have equivalent point densities representing a 0.001 m spatial
resolution in the vertical dimension. Red (unstressed plant posture in CFD model) and blue (stressed plant posture in CFD model) values denote the shape-based similarity to the aDv
profile, quantified by the visual distance statistic (dV).
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and overprediction (Figure 8). Broadly, measured u velocities exceed modeled u velocities, although this
varies with Re, and changes with distance downstream and vertically throughout the flow depth. The mean
average difference across the six measured profiles increases from 20.002 m s21 at Re 5 65,000, to 0.025 m
s21 at Re 5 110,000, indicating a slight under-prediction of u velocity by the model at higher Re. Proximal to
the plant (0.25–0.3125 X/l) the magnitude of differences are largest, but generally remain <0.10 m s21. Fur-
ther downstream as flow recovers, the magnitude of this velocity difference becomes smaller. Over the ver-
tical extent, measured u velocities tend to be greater than modeled u velocities in the range 0–0.3 Z/h,
suggestive of model under-prediction in the subcanopy region. This effect is most prominent closest to the
plant, before flow recovers. This model under-prediction in the subcanopy region is present for the entire
Re range. Above this zone, model overprediction is noted in the plant wake region. These differences
between the measured and stressed modeled velocities, and specifically their vertical dependence, explain
the systematic variation shown in Figure 6. The structural difference is caused by the transition from zones

Figure 8. Vertical and downstream differences in u velocity (aDv-CFD) for (a) Re 5 65,000, (b) Re 5 89,000, and (c) Re 5 110,000. Blue areas indicate sections of the profile where aDv mea-
sured u velocities exceed those predicted by the stressed plant posture CFD model (model under-prediction), whereas red areas indicate sections of the profile where measured u veloc-
ities are less than those predicted by the stressed plant posture CFD model (model overprediction).
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of model under-prediction in the subcanopy region, to zones of model overprediction in the wake region.
This is attributed to an under-representation of the plant blockage in the model, meaning that the plant
representations are more porous than the plant in the flume. This could be caused by not representing the
spanwise deformation of the plant during reconfiguration, which would likely further reduce the porosity of
the plant, and is a limitation of the current approach applied here. This would help account for the limited
ability to capture the magnitude of velocity peaks in the subcanopy region, and overprediction of velocity
in the wake region, whereby penetration of flow through the interior of the plant is responsible for modify-
ing the velocity immediately behind the plant blockage (Figures 7 and 8). If the plant porosity was further
reduced, the magnitude of subcanopy flow would increase, with reduced velocity expected in the wake
region.

3.3. Streamwise Velocity Field and Wake Structure
To further investigate the streamwise velocity field and wake structure, measurements of u velocity have
been linearly interpolated to allow for the comparison of the region 0.25–0.625 X/l against the same region
in the stressed model. Time-averaged u velocity was normalized by the inlet velocity (0.22, 0.30, and 0.37 m
s21, Figure 9), with the difference then calculated (aDv-CFD). Vertical slices of the u velocity flow field along
the midline of the model domain were compared (0.5 Y/w). A number of similarities between the u velocity
fields are clear, most notably in the length and shape characteristics for each of the plant wakes. The calcu-
lated differences (Figure 9) mirror the zones of model under/overprediction identified previously, associated
with an under-representation of the plant blockage in the model.

Flow separation and reattachment results in the formation of a low-velocity wake zone behind the plant
blockage; here defined as <0.5 of the streamwise velocity normalized by inlet velocity (Figure 10). A num-
ber of similarities are evident between the measured and stressed modeled plant wakes. For the stressed
modeled data, the wake shape remains approximately constant between Re 5 65,000–89,000, forming a
dual-layered structure, with the larger upper wake inclined slightly upward. At Re 5 110,000, a single-
layered, thicker wake exists, and this is positioned lower in the flow depth. In each case the wake markedly
thins in the downstream direction. The modeled wake thickness has decreased by 41.5, 59.2, and 41.2%
between 0.25 and 0.4 X/l for each Re. Also, the modeled wake length decreases from 3.9 plant lengths at
Re 5 65,000, to 3.3 plant lengths at Re 5 110,000.

In the measured case, a single-layered wake maintains an almost consistent shape throughout the entire Re
range, although ends more abruptly than in the modeled case. The measured wake thickness has decreased
by 38.7, 44.1, and 40.2% between 0.25 and 0.4 X/l for each Re, and therefore demonstrates a similar thinning
pattern to the modeled wake. The measured wake length is similar to the modeled wake length, showing a
decrease with increasing Re, from 3.9 plant lengths at Re 5 65,000, to 3.1 plant lengths at Re 5 110,000. The
trailing edge of the wake, which indicates the downstream wake limit, is progressively shifted toward lower
values of Z/h with increasing Re, and is expected to be associated with the vertical compression of the plant.
Combining Figures 9 and 10, a rapid gradation in velocity is modeled to occur between the low-velocity

Figure 9. Comparison of the aDv-measured and CFD-modeled normalized u velocity field on a plane at 0.5 Y/w for (a) Re 5 65,000, (b) Re 5 89,000, and (c) Re 5 110,000. Black pixels
denote plant location and the red dotted rectangle represents the aDv measurement region.
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Figure 10. Vertical distribution of the CFD-modeled and aDv-measured wake zone (orange) defined as <0.5 of the streamwise velocity
normalized by inlet velocity for (a) Re 5 65,000, (b) Re 5 89,000, and (c) Re 5 110,000. Black pixels denote plant location. Dashed lines indi-
cate the inferred location of the aDv measured wake in the zone where flow measurements were not possible.
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wake zone and the free-stream zone, with this velocity discontinuity indicative of shear layer formation and
the presence of Kelvin-Helmholtz instabilities, the frequency of which we calculated to be 0.20, 0.23, and
0.30 Hz for the different Re [Ho and Huerre, 1984; Ghisalberti and Nepf, 2002].

3.4. Turbulent Flow Structures
We have shown that the modeling system is capable of predicting the measured time-averaged flow con-
ditions, and therefore extend our analysis to investigate the turbulent structures associated with the
plant. The horizontal distribution of uv vorticity in a plane at 0.5 Z/h is shown in Figure 11, with two-
dimensional uv flow lines overlain, to show the modeled flow pathways through and around the plant. In
each Re case, the shedding of clockwise and anticlockwise rotating regions of high vorticity occurs, with
the development of a large region of high vorticity at the outer edge of the plant boundary, whose posi-
tion correspond with deflections to flow lines. It is acknowledged that vorticity alone is unable to distin-
guish vortices from the strain field, which is expected to be high in the region due to the velocity
gradient present. Here it is suggested that this plant shear layer turbulence is dominated by Kelvin-
Helmholtz and G€ortler-type vortices generated through shear instability [Ghisalberti and Nepf, 2002]. With-
in the plant body, smaller regions of high vorticity are distributed in the central region of the plant, and
the flow lines distorted. This illustrates the internal flow dynamics and the forcing of flow through con-
duits in the plant morphology. As Re increases, and the volumetric canopy morphology is vertically com-
pressed and its porosity reduced, both the magnitude of the uv vorticity and the length of the high-
vorticity regions at the outer plant boundary increase. To exemplify this, by taking an arbitrarily defined
value of uv vorticities as 6>1.5 Hz, the maximum length of the high-vorticity region increased by 41.2%
over the entire Re range. Changes in the volumetric canopy morphology therefore influence the velocity
gradient and regions of vorticity present.

An impression of the three-dimensional turbulent structures forming around the plant blockage is visual-
ized by plotting isosurfaces of the Q criterion [Hunt et al., 1988] (Figure 12). For a physical interpretation

Figure 11. Horizontal distribution of uv vorticity along a plane at 0.5 Z/h for (a) Re 5 65,000, (b) Re 5 89,000, and (c) Re 5 110,000, showing clockwise (green) and anticlockwise (purple)
regions of high vorticity. Black pixels denote plant location. Flow from left to right.
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of the Q criterion, a vortex is assumed to be present where the vorticity tensor exceeds the rate of the
strain tensor, and a local pressure minima exists, forming the vortex envelope. With increasing Re, it is
shown that the vortices extend further downstream, with the maximum vortex length almost doubling
over the modeled Re range. Vorticity magnitude increases with Re, with higher magnitudes distributed
toward the upper region of the plant. Between Re 5 65,000–89,000, the vortex appears to be stretched
but retains a similar form, although vorticity magnitude increases. For Re 5 110,000, the vortex shape is
modified, with a lengthening of the uppermost vortex tail, and this is suggested to be associated with the
stronger shear layer instability formed between the low-velocity wake zones and the free-stream zone
above. Again, this indicates an interplay between the volumetric canopy morphology and turbulent flow
structure.

3.5. Implications for Vegetative Flow Resistance
These high-resolution process predictions of flow and vegetation dynamics are useful when considering
vegetative flow resistance. Using the modeled pressure fields and integrating the upstream/downstream
difference in pressure acting normal to the plant surface over the entire lateral extent of the blockage, drag
forces (Fd) and drag coefficients (Cd) are calculated following the method described by Marjoribanks et al.

Figure 12. Comparison of three-dimensional structure of turbulence using the Q criterion, applying a Q threshold of 3.5, with the isosur-
face colored by vorticity magnitude.
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[2014b]. In Table 4 we compare Fd and Cd between the unstressed and stressed models, to analyze how dif-
ferences in plant posture influence drag.

For both plant representations, Fd increases almost linearly with Re. However, the modeled Fd is consistently
lower when using the stressed model, by as much as 27.1%. Incorporation of the stressed plant representa-
tion, which captures the shift in time-averaged plant posture to the mean flow, results in a reduced drag
force relative to the unstressed plant representation where the plant remains fully upright to flow. Similarly,
the Cd is lower in the stressed model, and this decreases with increasing Re. The more streamlined shape of
the plant helps account for this reduction and emphasizes the dynamic nature of Cd under changing plant
posture. These results signify the sensitivity of Fd and Cd to changes in plant posture, and the importance of
explicitly accounting for this when investigating vegetative resistance.

The Vogel exponent, w, quantifies the drag reduction by reconfiguration of a flexible body through a power
law dependence with velocity [Vogel, 1984]

Fd / U21w: (3)

Using this Fd-U relationship, w has previously been found to typically range from 20.2 to 21.2 for natural
vegetation [de Langre et al., 2012], with w relating to the flexibility of the plant [Aberle and Dittrich, 2012].
For a rigid plant, w 5 0, equation (3) returns the classical squared relation, while for a flexible plant, w 5 21,
equation (3) returns a linear force-velocity relation [Cullen, 2005; Whittaker et al., 2013]. For the H. odora
specimen investigated here, w 5 20.37, therefore suggesting the plant falls at the flexible end of the stiffer
range. It is important to remember that the Fd-U relationship is representative of only the relatively low-
velocity range investigated (<0.37 m s21), and therefore could be modified at higher velocities. However,
the marked plant deflection and considerable motion detected (Figures 3 and 4) suggest the plant has
moved beyond the trans-flexing zone where deflection is negligible and into the flexing zone where the
plant streamlines and frontal area reduces with velocity [Xavier et al., 2010]. Although providing an empirical
relationship, the Vogel exponent is not dimensionally correct, and cannot be used to calculate the drag
force and subsequent energy loss within vegetated rivers [Marjoribanks et al., 2014a]. However, it does allow
for the broader quantification of flexibility in plants, as demonstrated here [Dittrich et al., 2012]. Further-
more, using the Vogel exponent approach, a number of authors have characterized bulk vegetative resis-
tance terms including parameterization of plant biomechanical and plant geometry components, with
inclusion of separate foliage and stem contributions [V€astil€a and J€arvel€a, 2014], and species-specific drag
coefficients [J€arvel€a, 2004; Aberle and J€arvel€a, 2013] to improve process representation in such equations
[Marjoribanks et al., 2014a].

Here we link the Re-dependent drag coefficient to Manning’s n. In submerged cases, the presence of a tur-
bulent mixing layer between the vegetated low-velocity and free-stream zones adds complexity to deriva-
tions of vegetative resistance [Shucksmith et al., 2011], and therefore an equation applicable to submerged
vegetation is required. For submerged grasses, Wilson and Horritt [2002] consider the momentum absorbing
plant area for the calculation of Manning’s n, following:

n5
1

2g
R1=3Cd

A
a

� �1=2

; (4)

where g is gravitational acceleration, R is the hydraulic radius, A is the momentum absorbing area or fron-
tal area calculated from the TLS, and a is the cross-sectional flow area. Manning’s n values of 0.086, 0.080,

Table 4. The Drag Force (Fd) and Drag Coefficient (Cd) Using the (i) Unstressed Plant Posture and (ii) Stressed Plant Posture

Re

Drag Force (N m22) Drag Coefficient

(i) Unstressed (ii) Stressed % Change (i–ii) (i) Unstressed (ii) Stressed % Change (i–ii)

65,000 0.765 0.667 212.9 1.605 1.451 29.6
89,000 1.373 1.081 221.3 1.548 1.339 213.5
110,000 2.111 1.541 227.1 1.564 1.372 212.3
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and 0.078 are calculated for Re 5 65,000, 89,000, and 110,000, respectively. Reconfiguration of the plant
through the quantified reduction in drag coefficient and momentum absorbing area result in this
decrease of Manning’s n. These values are greater than those suggested by established texts, with Chow
[1959] suggesting a Manning’s n value of 0.035–0.070 for floodplains with scattered brush and heavy
weeds. The look-up table values, however, represent the resistance to flows over large spatial areas in
channel and floodplains, whereas the calculated values presented here are reflective of a single vegeta-
tion element in a flume.

4. Discussion

Here we have investigated time-dependent and time-averaged plant dynamics for a submerged, riparian
plant under three different flow Re through a combined experimental and numerical modeling approach.
Plant dynamics investigated through experimental measurements, demonstrated that for the time-
averaged plant motion there is a shift in the general plant posture as the plant reconfigures to the mean
flow [Sand-Jensen, 2003; Siniscalchi and Nikora, 2013]. In doing so, the volumetric canopy morphology is
vertically compressed and therefore the volume available for flow to pass through the plant (i.e., porosity
of the plant) is reduced. When time-dynamic motion is analyzed, we show the oscillatory motion to be Re
and location-dependent. This would increase the overall drag of the plant and increase the turbulence on
the lee side of the plant. However, there is no detectable coherence of movement across the plant. It may
be expected that the plant would demonstrate coherence of plant motions when coupled to strong oscil-
lations in flow velocity as shown for large-scale canopy flow processes [Ghisalberti and Nepf, 2006; Oka-
moto and Nezu, 2009; Okamoto et al., 2016], and where instantaneous motion is closely related to the
passage of large-scale eddies that interact with the entire plant [Siniscalchi and Nikora, 2012]. However, a
natural plant is not a single homogenous unit and there are a range of stem widths, lengths, thicknesses,
and flexural rigidities throughout, thereby affecting plant motion [Hurd, 2000]. This motion will be further
affected by the internal plant structure influencing the exposure to flow, and the flow passing through the
plant, which is discussed below. This highlights the difficulty in predicting motion dynamics in riparian
plants, and is further exemplified by Weissteiner et al. [2015] who show that structural properties of riparian
vegetation, such as the vertical distribution of stem area, can control the extent of plant compression dur-
ing reconfiguration.

The plant morphology captured for the unstressed state through TLS, and discretized from high-resolution
video imagery for the stressed state, enabled the time-averaged plant posture to be used as boundary con-
ditions in a CFD model. For the riparian species investigated here, TLS has captured the static plant posture
in air, and when submerged in the flume this structure remained similar due to the flexural rigidity support-
ing the plant. For macrophytes where the flexural rigidity is lower, however, once submerged in the flume
arguably the plant posture would be different due to buoyancy effects influencing the plant structure. As
such, we justify the use of a static model of plant morphology to model the stressed posture by altering the
volumetric canopy morphology to account for the reduction in porosity. The modeling system was shown
to correctly predict flow measurements by comparison with measured data, although the model slightly
under-predicted flow in the subcanopy region and very slightly overpredicted flow in the plant wake
region. Explicit consideration of the spanwise deformation to the plant under three-dimensional reconfigu-
ration, and the effect this has on plant porosity, would likely improve predictions. In the model we replicate
a region of subcanopy flow acceleration beneath the bulk of the plant blockage, which interacts and
inclines upward the low-velocity wake, resulting in a complex and three-dimensional wake structure (Figure
10). Similar observations have been made in airflow around a fir tree windbreak and have revealed large-
scale recirculation caused by an upwelling vortex immediately behind the tree, sustained by this subcanopy
acceleration [Lee and Lee, 2012], while in river applications, Freeman et al. [2000] reported flow diversion
and acceleration beneath the plant canopy. B€olscher et al. [2005] quantified this phenomenon in the field
with velocity profiles. In the plant wake region, the modeled wake shape remains approximately constant
for the low and mid Re, forming a dual-layered structure, with the larger upper wake inclined slightly
upward and markedly thinning in the downstream direction. For the highest Re, a thicker single-layered
wake is positioned lower in the flow depth. The measured and modeled wake lengths show very good
agreement, decreasing in length with increasing Re.
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In the plant wake, regions of high vorticity develop at the outer edge of the plant boundary. Within the
plant body, smaller regions of high vorticity in the central region of the plant illustrate the internal flow
dynamics and the forcing of flow through conduits in the plant morphology. As Re increases, and the volu-
metric canopy morphology is reduced, both the magnitude of the uv vorticity and the length of the high-
vorticity region from the outer plant boundary increase. This indicates an association between vortex length
and the strength of the shear instability and demonstrates the interplay between volumetric canopy mor-
phology, changes in plant porosity, and turbulent flow structures.

Plant shear layer turbulence is dominated by Kelvin-Helmholtz and G€ortler-type vortices generated through
shear instability [Ghisalberti and Nepf, 2002]. However, the plant is not a classic bluff body [Schnauder et al.,
2007], instead tending toward porous media flows [Yagci et al., 2010], with penetration of fluid through the
canopy resembling ‘‘bleed-flow’’ [Raine and Stevenson, 1977]. This aligns with our observation of flow
through conduits in the internal structure of the plant. As the flow strength increases and the plant recon-
figures to a dynamic equilibrium position with flow, the volumetric canopy morphology decreases and the
porosity of the plant decreases. Similarities are drawn with experiments around rigid arrays of cylinders to
resemble a porous cylinder, where Zong and Nepf [2012] report a weakening of the vortex street as the solid
volume fraction decreases (and so porosity increases). Here we show that as porosity is reduced, more flow
is forced around the plant, and with increasing Re vortices migrate further downstream as the shear instabil-
ity grows stronger (Figures 11 and 12).

These changes in flow dynamics have direct implications for the pressure regime, thus modifying the drag
response. We quantify a 13–27% drag reduction when comparing the stressed plant posture to the
unstressed plant posture. This highlights the significance of plant postural changes in reducing flow separa-
tion through streamlining and reconfiguration [Vollsinger et al., 2005], leading to a subsequent reduction in
form drag [Nikora, 2010] which accounts for 90–97% of the total drag for turbulent flows [Lilly, 1967; Vogel,
1994; Stoesser et al., 2010]. We acknowledge the limitation that only form drag is directly modeled in the
current approach, although for riparian plant species, form drag has been shown to dominate over viscous
drag [Nikora, 2010; V€astil€a and J€arvel€a, 2014]. This process understanding can be extended to consider drag
coefficients which are generally poorly understood for the complex geometries that characterize natural
vegetation [Marjoribanks et al., 2014a] and vary as a function of both vegetation density and stem Reynolds
number [Tanino and Nepf, 2008]. The wide range of plant morphologies associated with natural vegetation,
and the effects of their foliage contribution, will further act to modify the drag coefficient [Wilson et al.,
2003; Boothroyd et al., 2016a]. However, practical applications dealing with vegetation often assume a pre-
defined, constant drag coefficient of 1.0 or 1.2 [Dittrich et al., 2012]. In the example here, we show that the
drag coefficient varies from 1.45 to 1.34 for the H. odora specimen. This has direct implications for bulk veg-
etative resistance, and demonstrates the necessity to account for plant motion and morphology when
defining drag coefficients, instead of relying on predefined parameterizations.

In order to demonstrate this uncertainty, calculated Manning’s n values between 0.086 and 0.078 were
higher than those of established texts [e.g., Chow, 1959], although we acknowledge the differences in spa-
tial scale to which these values apply e.g. reach scale versus flume. Such improved parameterizations could
be applied to conveyance estimators either applying a one-dimensional hydrodynamic model or using a
Conveyance Estimation System [Wallingford, 2004]. These are typically based upon the Manning’s equation
which parameterizes and/or calibrates all frictional resistance and is applied to produce the correct relation-
ship between flow and water level. The same is true for industry-standard two-dimensional hydraulic mod-
els, which are shown to be particularly sensitive to the floodplain roughness values selected [Straatsma and
Baptist, 2008]. For example, Abu-Aly et al. [2014] report a maximum Manning’s n value of 0.343 for woody
vegetation patches (which is far higher than established texts) and find that application of spatially distrib-
uted vegetation roughness values causes a 7.4% increase in mean depth, and 17.5% decrease in mean
velocity relative to an unvegetated roughness scenario. Changes in the Manning’s n values associated with
the vegetation component of resistance will therefore alter hydraulic model outputs. In practice, the rough-
ness term in these models are used as a calibration parameter [e.g., Mason et al., 2003], and may no longer
reflect the intended process representation. The Manning’s n value therefore becomes effective as it repre-
sents several processes that contribute to energy loss (e.g., momentum loss, dispersion associated with sec-
ondary circulation, and diffusion). Applications of these models therefore tend to be run for a matrix of
effective Manning’s n values over a parameter range to ensure an optimum value is identified, meaning the
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values used may differ significantly from their measured or estimated values [Lane, 2005]. However, by
deriving Manning’s n for a single species following the approach used in this paper, which considers the
momentum loss, dispersion associated with secondary circulation, and diffusion, the Manning’s n value has
greater physical basis.

An explicit consideration of plant postural changes is shown to be essential in the prediction of three-
dimensional flow and wake structures. Previous studies have shown how plant characteristics such as the
plant morphology and foliation state can influence velocity distributions and drag forces [Gross, 1987; Free-
man et al., 2000; Wilson et al., 2008; Endalew et al., 2011]. Here we show how changes in the time-averaged
plant posture, influencing the volumetric canopy morphology and porosity, can result in similar effects.
These postural changes are relevant to a number of applications concerning vegetation-flow interactions.
This is highly appropriate to patch-scale studies of riparian vegetation roughness at the margins of active
channels [e.g., Manners et al., 2013] where a simplified beam elasticity equation was used to quantify deflec-
tions of stem height under flow. Whether such an equation accounts for the plant dynamics remains
unclear, especially as we highlight plant motions to vary spatially over the plant body across different scales,
and have a Re dependence. We are therefore currently developing the static plant representation through
the approach of Marjoribanks et al. [2015, 2016] where an Euler beam equation is used to dynamically
reconfigure the plant or patch through hydrodynamic forcing.

5. Conclusions

Results presented here successfully demonstrate that by incorporating the time-averaged plant posture
into a high-resolution CFD model, we are able to predict three-dimensional mean and turbulent flow
around a submerged riparian plant. Key findings include:

1. Under hydrodynamic loading, plant motion can be separated into time-dynamic and time-averaged
components. Time-dynamic plant motions were investigated by tracking the motion of plant tips, show-
ing a transition from horizontally dominated to vertically dominated movement and increased move-
ment extents as Re increases. Plant tip motion varies across the plant body in reaction to the local flow
and shows a dependence with Re. We suggest this is because stem widths, lengths, thicknesses, and flex-
ural rigidities vary throughout the plant and therefore the drag force will affect each component differ-
ently, meaning there will be a range of responses to the flow. Some parts of the plant will respond to the
flow first, while other parts of the plant will take longer to readjust and reconfigure. This results from dif-
ferences in the exposure of the plant to the flow, caused by the internal plant structure. Time-averaged
plant motion is associated with shifts in the general plant posture which reconfigures to the mean flow,
resulting in an 18% reduction in plant height, a 14% increase in plant length, and a doubling of the lead
and lee angles of the plant body. These motions are responsible for vertically compressing the plant in
the flow, thereby reducing the volumetric canopy morphology and plant porosity.

2. Vertical velocity profiles illustrate a zone of subcanopy flow acceleration which interacts with the low-
velocity wake region behind the plant, and helps generate an upwardly inclined wake structure that
thins in the downstream direction. With the wake defined as <0.5 of u velocity normalized by inlet veloc-
ity, with increasing Re the wake length decreases from 3.9 plant lengths to 3.1 plant lengths. We suggest
that the plant shear layer turbulence is dominated by Kelvin-Helmholtz and G€ortler-type vortices gener-
ated through shear instability [Ghisalberti and Nepf, 2002], the frequency of which we estimate to be
0.20, 0.23, and 0.30 Hz at Re 5 65,000, 89,000, and 110,000.

3. The time-averaged plant posture has been used as boundary conditions to discretize the plant in a high-
resolution CFD model, with the modeling system shown to correctly predict flow measurements. General
agreement is quantified through RMA regression, with u velocity correlation coefficients >0.8. Further-
more, the visual distance statistic demonstrates the similarity between aDv-measured and CFD-modeled
velocity profile shapes. Following validation, analysis is extended to investigate the turbulent flow struc-
tures associated with the plant, where it is shown that the modeled vortices migrate further downstream
as the shear instability grows stronger.

4. Using this process understanding of flow and vegetation dynamics to consider vegetative resistance, we
demonstrate the drag force experienced by the stressed plant representation is up to 27% lower than
that of the unstressed plant representation, highlighting the important role of reconfiguration as a form
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drag reduction mechanism [Nikora, 2010]. We quantify the Fd-U relationship, and calculate a Vogel expo-
nent of 20.37, indicative of a plant at the flexible end of the stiffer range. Similarly, we show the dynamic
nature of the drag coefficient under increasing Re, and how this impacts upon Manning’s n values, falling
from 0.086 to 0.078. These values remain considerably higher than traditional bulk vegetative resistance
terms for comparable vegetation, selected from classical look-up tables applied to channels/floodplains.
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