11 research outputs found

    A Lesson Plan for Partnerships: Insights from Leading STEM Nonprofits

    Get PDF
    In 2013, the U.S. Chamber of Commerce Foundation conducted research to better understand partnerships between corporations and nonprofits. The research, which was conducted through its Corporate Citizenship Center (CCC), looked at a specific set of nonprofit organizations. Each organization works to improve education in Science, Technology, Engineering, and Mathematics (STEM), and all received grants from the Department of Education's Investing in Innovation Fund.The goal of the research was to discover two things: (1) how leading nonprofits effectively partner with corporations, and (2) how nonprofits measure their success and share it with corporate donors. While STEM nonprofits were chosen for this study, the findings in this paper may apply to other types of nonprofit relationships

    Voice restoration following total laryngectomy by tracheoesophageal prosthesis: Effect on patients' quality of life and voice handicap in Jordan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little has been reported about the impact of tracheoesophageal (TE) speech on individuals in the Middle East where the procedure has been gaining in popularity. After total laryngectomy, individuals in Europe and North America have rated their quality of life as being lower than non-laryngectomized individuals. The purpose of this study was to evaluate changes in quality of life and degree of voice handicap reported by laryngectomized speakers from Jordan before and after establishment of TE speech.</p> <p>Methods</p> <p>Twelve male Jordanian laryngectomees completed the University of Michigan Head & Neck Quality of Life instrument and the Voice Handicap Index pre- and post-TE puncture.</p> <p>Results</p> <p>All subjects showed significant improvements in their quality of life following successful prosthetic voice restoration. In addition, voice handicap scores were significantly reduced from pre- to post-TE puncture.</p> <p>Conclusion</p> <p>Tracheoesophageal speech significantly improved the quality of life and limited the voice handicap imposed by total laryngectomy. This method of voice restoration has been used for a number of years in other countries and now appears to be a viable alternative within Jordan.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Effects of processing parameters and heat treatment on thermal conductivity of additively manufactured AlSi10Mg by selective laser melting

    Get PDF
    This work investigates the thermal conductivity of parts which have been additively manufactured using the aluminium alloy AlSi10Mg by selective laser melting, a laser-based powder bed fusion technique. Thermal conductivity characterisation is of particular importance to thermal engineers wishing to make use of additive manufacturing in next generation thermal management solutions. A number of processing parameters and scanning strategies were employed to fabricate samples for experimental characterisation. While the porosity of produced parts had a significant impact on thermal conductivity, after an anneal heat treatment post-processing step, thermal conductivity increased by 18–41% without any measurable change in porosity. Even though the parts produced with the “points” strategy have higher levels of porosity compared to the “contour-hatch” strategy, it has been found that after the heat treatment step, its thermal conductivity can be increased up to the “contour-hatch” strategy. Analysis of the resulting microstructures using scanning electron microscope and energy-dispersive X-ray showed precipitation and coalescence of Si with increasing heat treatment temperature, with dwell time having a lower impact. While there is a desire for additively manufactured parts with little to no porosity, it has been shown in this study that it is possible to reduce laser energy density requirements by approximately one order of magnitude and still produce parts with acceptable levels of thermal conductivity which could be used for components that are not subjected to strenuous loading conditions, such as heat sinks

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore