696 research outputs found

    Factors Influencing the Decision of Minority Students to Attend Graduate Schools of Social Work

    Get PDF
    This study of 255 minority students enrolled in Graduate Schools of Social Work examined factors which influenced them to decide to attend these schools. The most frequently mentioned reasons were the curriculum and location of the school followed by prestige, financial incentives, emphasis on minority concerns and influence of significant others. Those schools which attracted greater numbers of minorities tended to attract them on the basis of curriculum, emphasis on minority concerns and not requiring entrance examinations. Formal recruitment activities were not seen as particularly effective

    Persistence of Yersinia pestis in Soil Under Natural Conditions

    Get PDF
    As part of a fatal human plague case investigation, we showed that the plague bacterium, Yersinia pestis, can survive for at least 24 days in contaminated soil under natural conditions. These results have implications for defining plague foci, persistence, transmission, and bioremediation after a natural or intentional exposure to Y. pestis

    BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world

    Full text link
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world—from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association

    No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction

    Get PDF
    Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravityrelated effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd

    For the sake of resilience and multifunctionality, let's diversify planted forests!

    Get PDF
    As of 2020, the world has an estimated 290 million ha of planted forests and this number is continuously increasing. Of these, 131 million ha are monospecific planted forests under intensive management. Although monospecific planted forests are important in providing timber, they harbor less biodiversity and are potentially more susceptible to disturbances than natural or diverse planted forests. Here, we point out the increasing scientific evidence for increased resilience and ecosystem service provision of functionally and species diverse planted forests (hereafter referred to as diverse planted forests) compared to monospecific ones. Furthermore, we propose five concrete steps to foster the adoption of diverse planted forests: (1) improve awareness of benefits and practical options of diverse planted forests among land-owners, managers, and investors; (2) incentivize tree species diversity in public funding of afforestation and programs to diversify current maladapted planted forests of low diversity; (3) develop new wood-based products that can be derived from many different tree species not yet in use; (4) invest in research to assess landscape benefits of diverse planted forests for functional connectivity and resilience to global-change threats; and (5) improve the evidence base on diverse planted forests, in particular in currently under-represented regions, where new options could be tested
    • 

    corecore