89 research outputs found

    Seroprevalence of Brucella spp. and Rift Valley fever virus among slaughterhouse workers in Isiolo County, northern Kenya

    Get PDF
    Brucella spp. and Rift Valley fever virus (RVFV) are classified as priority zoonotic agents in Kenya, based on their public health and socioeconomic impact on the country. Data on the pathogen-specific and co-exposure levels is scarce due to limited active surveillance. This study investigated seroprevalence and co-exposure of Brucella spp. and RVFV and associated risk factors among slaughterhouse workers in Isiolo County, northern Kenya. A cross-sectional serosurvey was done in all 19 slaughterhouses in Isiolo County, enrolling 378 participants into the study. The overall seroprevalences for Brucella spp. and RVFV were 40.2% (95% CI: 35.2–45.4) and 18.3% (95% CI: 14.5–22.5), respectively while 10.3% (95% CI 7.4%-13.8%) of individuals were positive for antibodies against both Brucella spp. and RVFV. Virus neutralisation tests (VNT) confirmed anti-RVFV antibodies in 85% of ELISA-positive samples. Our seroprevalence results were comparable to community-level seroprevalences previously reported in the area. Since most of the study participants were not from livestock-keeping households, our findings attribute most of the detected infections to occupational exposure. The high exposure levels indicate slaughterhouse workers are the most at-risk population and there is need for infection, prevention, and control programs among this high-risk group. This is the first VNT confirmation of virus-neutralising antibodies among slaughterhouse workers in Isiolo County and corroborates reports of the area being a high-risk RVFV area as occasioned by previously reported outbreaks. This necessitates sensitization campaigns to enhance awareness of the risks involved and appropriate mitigation measures

    Immunoglobulin detection inwild birds: effectiveness of three secondary anti-avian IgY antibodies in direct ELISAs in 41 avian species

    Get PDF
    1.Immunological reagents for wild, non-model species are limited or often non-existent for many species. 2. In this study, we compare the reactivity of a newanti-passerine IgY secondary antibody with existing secondary antibodies developed for use with birds. Samples from 41 species from the following six avian orders were analysed: Anseriformes (1 family, 1 species), Columbiformes (1 family, 2 species), Galliformes (1 family, 1 species), Passeriformes (16 families, 34 species), Piciformes (1 family, 2 species) and Suliformes (1 family, 1 species). Direct ELISAs were performed to detect total IgY using goat anti-passerine IgY, goat anti-chicken IgY or goat anti-bird IgY secondary antibodies. 3.The anti-passerine antibody exhibited significantly higher IgY reactivity compared to the antichicken and/or anti-bird antibodies in 80% of the passerine families tested. Birds in the order Piciformes (woodpeckers) and order Suliformes (cormorants) were poorly detected by all three secondary antibodies. A comparison of serum and plasma IgY levels was made within the same individuals for two passerine species (house finch and white-crowned sparrow), and serum exhibited significantly more IgY than the plasma for all three secondary antibodies. This result indicates that serummay be preferred to plasma whenmeasuring total antibody levels in blood. 4.This study indicates that the anti-passerine IgY secondary antibody can effectively be used in immunological assays to detect passerine IgY for species in most passerine families and is preferred over anti-chicken and anti-bird secondary antibodies for the majority of passerine species. This antipasserine antibody will allow for more accurate detection and quantification of IgY in more wild bird species thanwas possible with previously available secondary antibodies

    Urban football narratives and the colonial process in Lourenço Marques

    Get PDF
    Support for Portuguese football teams, in Mozambique as well as in other former Portuguese colonies, could be interpreted either as a sign of the importance of a cultural colonial heritage in Africa or as a symbol of a perverse and neo-colonial acculturation. This article, focused on Maputo, the capital of Mozambique – formerly called Lourenc¸o Marques – argues that in order to understand contemporary social bonds, it is crucial to research the connection between the colonial process of urbanisation and the rise of urban popular cultures. Despite the existence of social discrimination in colonial Lourenc¸o Marques, deeply present in the spatial organisation of a city divided between a ‘concrete’ centre and the immense periphery, the consumption of football, as part of an emergent popular culture, crossed segregation lines. I argue that football narratives, locally appropriated, became the basis of daily social rituals and encounters, an element of urban sociability and the content of increasingly larger social networks. Therefore, the fact that a Portuguese narrative emerged as the dominant form of popular culture is deeply connected to the growth of an urban community

    Cooperative Research and Infectious Disease Surveillance: A 2021 Epilogue.

    Get PDF
    As the world looks forward to turning a corner in the face of the COVID-19 pandemic, it becomes increasingly evident that international research cooperation and dialogue is necessary to end this global catastrophe. Last year, we initiated a research topic: "Infectious Disease Surveillance: Cooperative Research in Response to Recent Outbreaks, Including COVID-19," which aimed at featuring manuscripts focused on the essential link between surveillance and cooperative research for emerging and endemic diseases, and highlighting scientific partnerships in countries under-represented in the scientific literature. Here we recognize the body of work published from our manuscript call that resulted in over 50 published papers. This current analysis describes articles and authors from a variety of funded and unfunded international sources. The work exemplifies successful research and publications which are frequently cooperative, and may serve as a basis to model further global scientific engagements

    Operationalizing Cooperative Research for Infectious Disease Surveillance: Lessons Learned and Ways Forward.

    Get PDF
    The current COVID-19 pandemic demonstrates the need for urgent and on-demand solutions to provide diagnostics, treatment and preventative measures for infectious disease outbreaks. Once solutions are developed, meeting capacities depends on the ability to mitigate technical, logistical and production issues. While it is difficult to predict the next outbreak, augmenting investments in preparedness, such as infectious disease surveillance, is far more effective than mustering last-minute response funds. Bringing research outputs into practice sooner rather than later is part of an agile approach to pivot and deliver solutions. Cooperative multi- country research programs, especially those funded by global biosecurity programs, develop capacity that can be applied to infectious disease surveillance and research that enhances detection, identification, and response to emerging and re-emerging pathogens with epidemic or pandemic potential. Moreover, these programs enhance trust building among partners, which is essential because setting expectation and commitment are required for successful research and training. Measuring research outputs, evaluating outcomes and justifying continual investments are essential but not straightforward. Lessons learned include those related to reducing biological threats and maturing capabilities for national laboratory diagnostics strategy and related health systems. Challenges, such as growing networks, promoting scientific transparency, data and material sharing, sustaining funds and developing research strategies remain to be fully resolved. Here, experiences from several programs highlight successful partnerships that provide ways forward to address the next outbreak

    A scoping review of zoonotic parasites and pathogens associated with abattoirs in Eastern Africa and recommendations for abattoirs as disease surveillance sites

    Get PDF
    Abattoirs are facilities where livestock are slaughtered and are an important aspect in the food production chain. There are several types of abattoirs, which differ in infrastructure and facilities, sanitation and PPE practices, and adherence to regulations. In each abattoir facility, worker exposure to animals and animal products increases their risk of infection from zoonotic pathogens. Backyard abattoirs and slaughter slabs have the highest risk of pathogen transmission because of substandard hygiene practices and minimal infrastructure. These abattoir conditions can often contribute to environmental contamination and may play a significant role in disease outbreaks within communities. To assess further the risk of disease, we conducted a scoping review of parasites and pathogens among livestock and human workers in abattoirs across 13 Eastern African countries, which are hotspots for zoonoses. Our search results (n = 104 articles) showed the presence of bacteria, viruses, fungi, and macroparasites (nematodes, cestodes, etc.) in cattle, goats, sheep, pigs, camels, and poultry. Most articles reported results from cattle, and the most frequent pathogen detected was Mycobacterium bovis, which causes bovine tuberculosis. Some articles included worker survey and questionnaires that suggested how the use of PPE along with proper worker training and safe animal handling practices could reduce disease risk. Based on these findings, we discuss ways to improve abattoir biosafety and increase biosurveillance for disease control and mitigation. Abattoirs are a ‘catch all’ for pathogens, and by surveying animals at abattoirs, health officials can determine which diseases are prevalent in different regions and which pathogens are most likely transmitted from wildlife to livestock. We suggest a regional approach to biosurveillance, which will improve testing and data gathering for enhanced disease risk mapping and forecasting. Next generation sequencing will be key in identifying a wide range of pathogens, rather than a targeted approach

    Climate change and infectious disease: A prologue on multidisciplinary cooperation and predictive analytics

    Get PDF
    Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative “all call,” we can enhance our ability to engage and resolve current and emerging problems

    Immunoglobulin detection inwild birds: effectiveness of three secondary anti-avian IgY antibodies in direct ELISAs in 41 avian species

    Get PDF
    1.Immunological reagents for wild, non-model species are limited or often non-existent for many species. 2. In this study, we compare the reactivity of a newanti-passerine IgY secondary antibody with existing secondary antibodies developed for use with birds. Samples from 41 species from the following six avian orders were analysed: Anseriformes (1 family, 1 species), Columbiformes (1 family, 2 species), Galliformes (1 family, 1 species), Passeriformes (16 families, 34 species), Piciformes (1 family, 2 species) and Suliformes (1 family, 1 species). Direct ELISAs were performed to detect total IgY using goat anti-passerine IgY, goat anti-chicken IgY or goat anti-bird IgY secondary antibodies. 3.The anti-passerine antibody exhibited significantly higher IgY reactivity compared to the antichicken and/or anti-bird antibodies in 80% of the passerine families tested. Birds in the order Piciformes (woodpeckers) and order Suliformes (cormorants) were poorly detected by all three secondary antibodies. A comparison of serum and plasma IgY levels was made within the same individuals for two passerine species (house finch and white-crowned sparrow), and serum exhibited significantly more IgY than the plasma for all three secondary antibodies. This result indicates that serummay be preferred to plasma whenmeasuring total antibody levels in blood. 4.This study indicates that the anti-passerine IgY secondary antibody can effectively be used in immunological assays to detect passerine IgY for species in most passerine families and is preferred over anti-chicken and anti-bird secondary antibodies for the majority of passerine species. This antipasserine antibody will allow for more accurate detection and quantification of IgY in more wild bird species thanwas possible with previously available secondary antibodies

    Connecting network properties of rapidly disseminating epizoonotics

    Get PDF
    BACKGROUND: To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure. METHODS: Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) ‘connectivity’, a model that integrated bio-physical concepts (the agent’s transmission cycle, road topology) into indicators designed to measure networks (‘nodes’ or infected sites with short- and long-range links), and 2) ‘contacts’, which focused on infected individuals but did not assess connectivity. RESULTS: The connectivity model showed five network properties: 1) spatial aggregation of cases (disease clusters), 2) links among similar ‘nodes’ (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a ‘‘20:800 pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads. CONCLUSIONS: Geo-temporal constructs of Network Theory’s nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished classes of cases, nodes, and networks, generating information usable to revise theory and optimize control measures. Prospective studies that consider pre-outbreak predictors, such as connecting networks, are recommended.The National Veterinary Research Institute, Vom, Plateau, Nigeria; the Center for Non-Linear Studies of Los Alamos National Laboratory; and partially funded by Defense Threat Reduction Agency (DTRA) Grant CBT-09-IST-05-1-0092 (to JMF).http://www.plosone.orgab2012ab2013 (Author correction
    corecore