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Abstract

Background: To effectively control the geographical dissemination of infectious diseases, their properties need to be
determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting
network, we explored constructs meant to reveal the network properties associated with disease spread, which included the
road structure.

Methods: Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by
Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were
compared: 1) ‘connectivity’, a model that integrated bio-physical concepts (the agent’s transmission cycle, road topology)
into indicators designed to measure networks (‘nodes’ or infected sites with short- and long-range links), and 2) ‘contacts’,
which focused on infected individuals but did not assess connectivity.

Results: The connectivity model showed five network properties: 1) spatial aggregation of cases (disease clusters), 2) links
among similar ‘nodes’ (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving
from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a ‘‘20:800 pattern). In
both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly
connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact
model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity
model. When assessed together, the synchronicity and directionality properties explained when and where an infectious
disease spreads.

Conclusions: Geo-temporal constructs of Network Theory’s nodes and links were retrospectively validated in rapidly
disseminating infectious diseases. They distinguished classes of cases, nodes, and networks, generating information usable
to revise theory and optimize control measures. Prospective studies that consider pre-outbreak predictors, such as
connecting networks, are recommended.

Citation: Rivas AL, Fasina FO, Hoogesteyn AL, Konah SN, Febles JL, et al. (2012) Connecting Network Properties of Rapidly Disseminating Epizoonotics. PLoS
ONE 7(6): e39778. doi:10.1371/journal.pone.0039778

Editor: Alessandro Vespignani, Northeastern University, United States of America

Received September 1, 2011; Accepted May 25, 2012; Published June 25, 2012

Copyright: � 2012 Rivas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was facilitated by the National Veterinary Research Institute, Vom, Plateau, Nigeria; the Center for Non-Linear Studies of Los Alamos
National Laboratory; and partially funded by Defense Threat Reduction Agency (DTRA) Grant CBT-09-IST-05-1-0092 (to JMF). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: ALR has a pending patent application (‘METHOD OF IDENTIFYING CLUSTERS AND CONNECTIVITY BETWEEN CLUSTERS’, US Patent Office
application number 20090082997, Class name: Statistical measurement, Publication date: 03/26/2009). This does not alter the authors’ adherence to all the PLoS
ONE policies on sharing data and materials.

* E-mail: alrivas@unm.edu

Introduction

The first recorded effort of a successful intervention aimed at

controlling an epidemic was that of John Snow –the British

physician who, in 1854, discovered and prevented the dissemina-

tion mechanism of cholera epidemics [1]. Snow integrated what,

today, could be described as medicine, statistics, geography, civil

engineering, and cost-benefit analysis: he mapped London’s water

network and, with simple graphs, quantified the number of cholera

cases associated with specific households (http://en.wikipedia.org/

wiki/File:Snow-cholera-map.jpg). That led him to geographically

identify the water pump suspected to be contaminated. By

removing the handle of the pump –leaving it non-operational–,

he stopped the epidemic.

He did not intervene on people. He did not intervene on the

pathogen. He intervened on a physical structure that connected

susceptible hosts with the microbe –the water distribution
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network– and did so before infections could occur. Snow acted on

connectivity, a concept related to, but independent from both the

infectious agent and the susceptible host.

His example provides a reference against which views on how

epidemics spread can be analyzed. Hoping that a review of fields

involved in epidemiology may identify unmet research needs, the

contents of mathematical epidemiology and medical geography

are summarized.

Mathematical epidemiology focuses on hosts. It asks who is in

contact with whom. [2,3]. This field began in 1908, when Sir

Ronald Ross, after discovering that mosquitoes transmit malaria,

defined the ‘critical mosquito density’ (later known as the basic

reproductive number, or R0 [4]. The R0 is the ratio of secondary

cases generated per primary case which, if .1, indicates that the

epidemic will disseminate; and, if #1, predicts that the epidemic

will soon die out [5]. This approach has been applied both in

endemic and in epidemic diseases [6,7]. While, in some cases, this

quantity or R0-related quantities are directly estimated from

epidemic data [8,9], R0 is usually indirectly estimated, utilizing a

process whose validity depends on several assumptions [10]. One

such assumption is that individuals are homogeneously mixed: the

R0 concept may be valid when hosts are in close contact with one

another. Yet, R0-based models, which do not consider low-scale

geographical data, have overestimated some epidemics [11–18].

Other mathematical approaches have focused on social structure

[2]. They consider sub-populations suspected to be the target of

the epidemic, which could be under-estimated if the highest scale

(the total population) is measured but no stratification is conducted

[19]. Variations of this approach assess groups, e.g., family

members, co-workers, and schoolmates [2]. These models do not

consider geographical data.

A third group of mathematical models has explored networks.

They do not assume that the population is homogeneously mixed.

Instead, they consider the relative location of each individual (a

‘node’ or vertex, which may be represented by a circle or point),

and contacts between individuals (‘links’ or ‘edges’, e.g., a line that

connects two nodes [20–24]). While network models are usually

labeled ‘spatial’, typically, they lack geographic data [25].

Social network analysis (SNA) is one exception to the previous

statement. This approach may include geographically explicit

data, as well as temporal data. It determines the location of

individuals (‘nodes’) and the time and duration of contacts [26].

SNA has demonstrated that temporal structures may influence

epidemics in several ways [27]. SNA has been reported to: 1) risk

missing data on connections [27], and 2) be sensitive to dynamic

changes [28].

Medical geography addresses some of the limitations described

above. This approach is based on disease maps, today generated

with geographical information systems. Such maps may reveal

geographical data patterns likely to be missed when only tabular

data are considered [29]. Geographical models are indicated

when geographical heterogeneity is documented: when disease

clusters (geographical aggregations of cases at higher levels than

expected) are observed, homogeneous mixing-based models are

not valid [15]. Coupled with spatial statistical analysis, disease

maps have attempted not to explain general problems but to be

applicable [30]. Potential limitations of this approach include: 1)

dependence on a relatively large sample size (rarely available in

the early phase of exotic epidemics), and 2) dependence on static

processes (a rare event in emerging epidemics, in which, the

centroid of disease clusters, may rapidly change).

To control epidemics, functional (network theory-based),

geographically explicit models that measure both dynamics and

connectivity are needed [31,33–36]. Calls to study both global and

local dynamics –which occur at high and low scales, respectively–

have been expressed [15,36]. Yet, the simple combination of the

previous models will not generate what is needed because they

focus on contacts (people or animals) and, at the earliest epidemic

phase, the number of infected individuals is very low. While air-

borne epidemics have been investigated [12,37], they are atypical

because their connecting structure is mobile, and, in air travel-

mediated epidemics, reduced to the few yards that separate

passengers sharing the same aircraft.

Therefore, a model that measures epidemic connectivity, is

needed. Connectivity relates to, but differs from distance [38–40],

for instance, two pairs of points, separated by the same Euclidean

distance, will differ in connectivity if one pair is separated by a

mountain or lake but the other pair is not. Connectivity can

modify or be modified by distance, time, and/or neighbors:

different geographical sites may behave as nodes at different times;

e. g., a factory may act as a node on week days, losing that

condition on weekends, when a park may become a node. It has

been proposed that, because the network’s architecture influences

the global microbial invasion and/or mobility, connectivity needs

to be measured and, because connections change over time, geo-

temporal data should be assessed [41,42]. These propositions have

been documented: road or river networks can promote or delay

disease spread [32,43–49].

While several authors have called for methods that integrate

network analysis with geographical data [27,32,50], the lack of

low-scale geo-referenced data has been mentioned as an imped-

iment [51,52]. A second reason to be considered is that nature

does not offer bio-geo-temporal equivalents of ‘nodes’ and ‘edges’:

they should be created and validated. To build such constructs, the

model to be created should: 1) utilize low-scale geo-temporal data;

2) consider both short- and long-range connections as well as geo-

temporal dynamics, i.e., the geo-temporal progression of the

epidemic should be clearly determined; 3) evaluate reproducibility;

and 4) facilitate comparisons against alternatives, which may

include cost-benefit metrics [33,53,54].

In addition, the model should distinguish contact-related from

connectivity-related networks, as John Snow did. While both

networks are associated, they are not synonymous: while mobile

people or animals use non-mobile connecting networks –such as

road, water, railroad networks; as well as food networks (e.g.,

markets) and energy networks (e.g., gas stations)–, such networks

are built before they are used by humans and animals. Hence, the

properties of connecting networks can be investigated even

without data on humans or animals.

However, the physical connecting network, per se, is not the

concept of interest: measuring roads or railroads, alone, will not

provide information usable to control epidemics. The network of

interest is dynamic and much larger: it involves bio-geo-temporal

connecting interactions.

Figure 1. Detection of ‘along-road’ disease clusters and empirical determination of epidemic nodes. Maps show high-scale geographical
data of the 2001 Uruguayan FMD (A) and the 2006 Nigerian AI H5N1 (B) epizoonotics. Low-scale data revealed that epidemic cases not only displayed
spatial auto-correlation but also clustered along the road network (C, D).The radii of epidemic nodes (the smallest circles that included one or more
highway intersections[s] and epidemic cases, at any viral transmission cycle [TC] except TC I) were 7.5 -km (FMD, E) and 31-km long (AI, F). In both
epizoonotics, .57% of all cases occurred within epidemic nodes (A, B, E, F).
doi:10.1371/journal.pone.0039778.g001
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Accordingly, two models were evaluated: 1) one focusing on

connectivity (in addition to contacts), and 2) one focusing on

contacts, in which connectivity was not explicitly assessed, but

neighbors were considered. Both approaches were tested utilizing

geo-temporal datasets of emerging or exotic infectious diseases that

affect vertebrates. The validity of the connectivity model was

evaluated by asking whether network properties were revealed

(such as disease clustering, assortatitivy, synchronicity, direction-

ality, and Pareto’s’ 20:809 data distribution [12,20,55,56]). The

reproducibility was determined by investigating infectious diseases

that differed in pathogen, host species, vertebrate class, geography,

and time, but shared the fact that all hosts were susceptible prior to

microbial invasion. The cost-benefit impact was estimated by

comparing, across models, the total number of cases, observed at

the end of the study period. By counting the number of cases these

models captured, we expected that the role of connectivity could

be determined. It was postulated that, if network properties were

detected in two episodes of disease dispersal that affected different

classes of vertebrates (mammals and birds) and involved different

pathogens, it could then be inferred that such properties are

independent of infective agent, infected host species, vertebrate

class, and spatial location. We hypothesized that, to rapidly

disseminate, invading microbes require not only susceptible hosts

but also a pre-established connecting structure (e.g., a river

network). While many networks may exist, we focused on the one

reported to be used most of the time: the road network [53]. Here

we asked, first, whether actual processes of infectious disease

dispersal display network properties, and, second, if so, whether a

connecting network –that of roads– can influence disease spread.

Materials and Methods

Bio-geo-temporal Data (Primary Variables)
The foot-and-mouth (FMD) and avian influenza H5N1 (AI)

epizoonotics here analyzed, affected cows and chickens, respec-

tively. They have been reported before [43,45]. Geographical data

included: 1) point (epidemic cases), 2) line (roads), and 3) surface

(population density) data. An epidemic case was defined as any farm

where, based on laboratory tests, at least one animal was

diagnosed as infected. Epidemic day reflected the relative time,

within the epizoonotic, when a case was reported. The analyzed

datasets differed: while the FMD dataset included data on the

location and size of infected and non-infected farms, the AI dataset

did not include data on non-infected farms. While the AI dataset

included temporal data on daily basis for all observations, the

FMD dataset had aggregate temporal data between epidemic days

7 and 60.

Description of Constructs (Secondary Variables)
The epidemic node was defined as the smallest circle that included:

1) .50% of all cases reported per viral transmission cycle (TC),

except TC I [45], and 2) a highway intersection. The reason why the

smallest possible circle was measured is due to the finite

dimensions of the Earth: the number of nodes is inversely related

to their size (if the radius of the node were as large as that of this

planet, there would be only one node and no links). The reason

why data reported in TC I were not considered was that no disease

dispersal has yet occurred at that time, i.e., in order to disseminate

over space, a pathogen needs a time period equal to, or longer

than one TC. We considered the TC of the FMD virus to be 3

days and that of the AI virus to be 2 days [43,45]. Assuming that

epidemic nodes were circular, their critical radius was determined by

counting, at each TC, the number of cases located inside and

outside circles of various radii [45]. While epidemic nodes always

included cases, cases could also be found outside such nodes.

Highway intersection areas were circles of radius equal to that of

epidemic nodes, centered on intersections. They shared all aspects of

epidemic nodes, except epidemic cases.

Road segments (lines) were components of the road network.

When located within epidemic nodes, they were assumed to estimate

short-range node degrees.

An infective link was any segment of an Euclidean graph that

connected pairs of epidemic cases. Depending on the location of such

cases and/or the relative location of epidemic nodes, infective links

estimated long-range connectivity. When cases were outside epidemic

nodes and there was no epidemic node between cases, infective links did

not involve epidemic nodes. However, when either epidemic cases were

located within epidemic nodes or such nodes were located between

pairs of cases, infective links crossed epidemic nodes: in such situations,

the number of infective links crossing a node’s surface estimated

long-range node degrees [22].

Node rank was the number of infective link(s) that intersected each

epidemic node, where ‘rank 1’ identified the node crossed by the

largest number of infective links and ‘rank n’ was the node crossed by

the smallest number of such links. It was assumed that all infective

links were available from day 1 onward [57]. Therefore, node

degrees were assessed with indicators that estimated short- and

long-range connectivity: road segments and infective links, respectively.

The distance between road intersections was generated with an

additional graph. It connected all highway intersections, regardless

of the presence or absence of epidemic cases.

Neighbors or contacts were later cases found within circles of radius

equal to that of the epidemic node, centered on the location of earlier

cases. They estimated the contact model.

The difference between the two models was connectivity: not

measured in the contact model, measured in the connectivity

model. While the contact model focused on a post-outbreak

variable (contacts, e.g., neighbors), the connectivity model assessed

a pre-outbreak variable (roads). While the contact model evaluated

circles centered on infected sites, the connectivity model investi-

gated circles centered on the road network. While roads could be

captured by the contact model, such inclusion was not intentional:

the contact model, per se, did not measure connectivity. While the

connectivity model measured contacts, the contact model did not

consider how infected and susceptible individuals could be linked

outside the original cluster: the contact model inherently assumed

that the invading agent could jump from one place to another

without using a geographically continuous, observable path. While

Figure 2. Differentiation of epidemic cases, detection of network properties, and estimation of long-range connectivity in the FMD
epizoonotic. Not all primary FMD cases –those reported in the first transmission cycle or TC– were located within circles that included a highway
intersection: only one the first 6 primary cases was connected (A). In contrast, at or after TC II, most cases were connected: they were within epidemic
nodes. Some epidemic nodes included a much higher proportion of cases than average nodes, e.g., 8 epidemic nodes included 115 of all 402 within-
node cases (B). Those 8 nodes were located in an area characterized by a high density of road segments (box, A). Such nodes revealed assortativity
(selective connection among similar nodes) as well as Pareto’s ‘‘20:800 pattern: 8 of the 157 nodes connected at or after TC II (5% of all nodes)
reported 23% of all cases (132/572), i. e., these nodes included 4.6 times (23/5) more cases than average nodes (B, C). To estimate long-range
connectivity, a graph was made, which connected every pair of epidemic cases with Euclidean lines, here named infective links (D). A low-scale map
shows infective links crossing 3 partially overlapping epidemic nodes, which include one case (E).
doi:10.1371/journal.pone.0039778.g002

Connecting (Network) Properties of Epizoonotics

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e39778



Connecting (Network) Properties of Epizoonotics

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e39778



disease spread may be mediated by wind, air travel, or migratory

birds [58], such patterns were not substantiated in these

epizoonotics [43,45].

Borrowing metrics from civil engineering, connectivity was

described by length, continuity, and/or proximity [59]. Proximity

was defined as the Euclidean distance between pairs of road

intersections. Length referred to that of road segments. Continuity

described the degree of fragmentation, if any, the road segments

found in epidemic nodes could reveal. By superimposing the layers

described above, additional digital and graphic data were created.

Software
Connectivity estimates (e.g., infective links) were calculated with

either a proprietary algorithm, ArcView GIS 3.3, ArcGIS Desktop 9.0,

and/or ArcGis 9.3 (ESRI, Redlands, CA, USA). Geographical data

and spatial statistical tests were processed with ArcGis 9.3. The GIS

command buffer was utilized to create circles of various radii which

were then used to select by location the infected farms located inside

and outside such circles. The GIS commands intersect, clip, and/or

merge were used to group variables of various shapes (e.g., points

and polygons).

Other statistical tests were performed with Minitab 15 (Minitab

Inc., State College, PA, USA).

Results

Non-random Patterns and Determination of Epidemic
Nodes

Clustering. Both epizoonotics displayed spatial aggregation

of cases (clustering). Although disease clusters are typically found

only in early phases [60], they were detected over the whole

disease dissemination process (60 days in FMD, 24 weeks in AI,

Figures 1a, b). In addition to global and local case spatial auto-

correlation [61] (P,0.01, Moran’s Index and Getis-Ord G, not

shown), clustering was observed along roads, as expressed in

Figures 1 c and d.

Validation of epidemic nodes. In the FMD epizoonotic,

the smallest circle that included .50% of the cases, from the

second transmission cycle (TC) onward, had a 7.5-km radius,

while, in the AI epizoonotic, 31-km radius circles were the smallest

that, at all times, included .50% of the cases (Figures 1e and f).

Those circles, which included roads, estimated epidemic nodes (Table

1 in Text S1). Epidemic nodes included 57.5% (65/113, in AI) and

70% (402/572, in FMD) of all epidemic cases. These circles

revealed epidemic dynamics: within 3 days (between TC I and TC

II), the FMD epicenter (the centroid defined by all epidemic nodes)

moved 40 km in a SW direction, while the centroid of the AI

epizoonotic differed 700 km between the first and the second TC

(Figure S1). Such nodes helped to reveal network properties.

The FMD Network Properties and Discriminating
Interactions

Differentiation of primary cases. Only one of the 6 FMD

cases (16.6%) reported in TC I (days 1–3) was found within epidemic

nodes (Figure 2a). Therefore, not all primary cases were functionally

identical: only one was connected. In contrast, in TC II (after the

infectious agent had enough time to disseminate), 17 of the 24

cases (71%) were reported within epidemic nodes (Table S1). Hence,

disease spread depended on getting access to a disseminating

(connected) network, which was observable at or after TC II, as

Figure 2b shows.

Differentiation of epidemic nodes and detection of

Pareto’s pattern. Epidemic nodes were distinguished by the

number of cases/node: 5% (8/157) of all epidemic nodes reported

over 60 epidemic days included 23% of all cases (132/572, Table

S1). That feature displayed a Pareto’s ‘20:80 pattern’: a small

percentage of nodes was associated with .4 times more cases (23/

5 = 4.6) than expected under the assumption of an equal number

of cases per node.

Assortativity. More connections were observed among

similar than among dissimilar nodes (assortativity). Figures 2b

and c indicate, both geographically and numerically, that, at or

after TC II, 8 epidemic nodes displayed similarities: many road segments

inter-connected such nodes, the 8 nodes were close to one another

(some of them partially overlapped), and revealed a much higher

percentage of epidemic cases than average nodes.

Synchronicity. The simultaneous engagement of functionally

similar nodes was observed in TC II, when 56 FMD nodes were

found to be connected (Figure S1).

Relationships between connectivity and case

occurrence. Because some TC I and TC II epidemic nodes

overlapped, such nodes were merged. Because FMD data, after

TC II, were temporally aggregated, TC-specific node merging

could not be conducted after TC II. To explore relationships

between merged nodes (or cases) and long-range connectivity, a graph

that connected every pair of epidemic cases was created. Figures 2

d and e express high- and low-scale versions of such graph,

showing lines here named infective links. Infective link density/node (the

number of TC I or II infective links crossing each [merged or non-

merged] epidemic node, per sq km) was correlated with overall

within-node case density (r = .75, P,0.02, Figures 3a and b, Table

S2). That is, long-range connectivity, measured in the first 10% of

the epidemic (days 1–6), predicted the density of cases/sq km

found in the last 90% of the epidemic.

Relationships between connectivity and population

density. Farm density was assessed as a proxy estimate for

animal density [62]. A global analysis showed that farm density

was positively associated with the number of epidemic nodes per TC:

over time, population density correlated with connectivity

(Figures 4a–c). However, as Figure 4c reveals, that interaction

was not a simple one but mediated by a heterogenous (fragmented)

bio-geographical landscape.

The AI Network Properties and Discriminating
Interactions

Differentiation of primary cases and epidemic nodes, and

detection of Pareto pattern. Not all primary epidemic cases were

connected. Figure 5a shows that not all primary cases were within

epidemic nodes. Epidemic nodes were not functionally identical, either:

four of them (44.4% of all nodes, red pentagon, Figure 5b)

included 89% (58/65) of all within-node cases, i.e., 4 nodes

showed a number of cases twice higher than average. Two of those

Figure 3. Relationships between pre- and post-outbreak variables in FMD. Because some TC I and TC II epidemic nodes overlapped, they
were merged. Merging resulted in a total of 9 (one in TC I, 8 in TC II) node clusters (A). The hypothesis that the number of infective links crossing each
node cluster preceded case occurrence was supported by the data: the correlation between infective link density (number of infective links crossing
epidemic nodes, per sq km, observed at TC I and TC II) and within-node case density (cases reported by epidemic day 60, expressed on a per sq km
basis) was positive and significant (r = .75, P,0.02, B). Early variables (infective links observed in the first 10% of the epidemic progression [days 1–6]
predicted late outcomes (within-node case density, observed in the last 90% of the epidemic [days 7–60]).
doi:10.1371/journal.pone.0039778.g003
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Figure 4. Dynamics of the FMD connectivity-population interaction. Farm density was used as a proxy variable for animal density. The
temporal connectivity (epidemic nodes per TC) was positively correlated with the temporal farm density (characterized by size classes and measured per
TC): over time, the greater the number of farms –which were smaller and raised more animals/sq km–, the greater the number of connected epidemic
nodes found per TC (A). In spite of the observed correlation, a highly fractured (heterogenous) geographical distribution was observed (B, C). A subset
of the whole epidemic region (indicated in a box shown in panel B) is displayed in panel C, which reports, numerically, the data of the region under
study. Findings document that post-outbreak data (cases, epidemic nodes) can be linked to pre-outbreak (population, connectivity) data.
doi:10.1371/journal.pone.0039778.g004
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Figure 5. Differentiation of epidemic cases, detection of network properties, and estimation of long-range connectivity in the AI
epizoonotic. Low-scale data revealed that one primary AI case was located close to but outside the connecting structure defined by epidemic nodes
(A). In contrast, at or after TC II, most cases were found within epidemic nodes (B). Two clusters of cases were observed (red polygons, B). Some
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nodes accounted for 46 within-node cases (red pentagon,

Figure 5b). Hence, 22% (2/9) of all nodes explained 71% (46/

65) of all within-node cases, i.e., a 3.3:1 ratio –a Pareto pattern

that also demonstrated not all epidemic nodes were similar. Epidemic

node-associated clusters also met the criteria defined by Network

Theory [63]: their road segments estimated short-range node

degrees (Figure 5b).

Assortativity, interactions among networks, and a second

Pareto pattern. Assortativity was visually observed: AI nodes #
1–3 showed the highest number of cases and linked with one

another through a continuous ring of short-range road segments

(red pentagon, Figure 5b). Interactions among networks were

revealed: while 16 highway intersections were observed, only nine of

them included epidemic cases, i.e., only 9 road intersection areas –a

network composed of circles of radius equal to that of epidemic

nodes– acted as epidemic nodes (Figure 5b). This network displayed a

Pareto pattern: 25% of all road intersection areas (4/16) included 80%

(52/65) of all within-node epidemic cases (Figure 5c).

Relationships between connectivity and case

occurrence. Infective link density/node (links/sq km) correlated

with case density (r = .98, P,0.001, Figures 6 a–c, and Table S2).

Synchronicity and directionality. The number of infective

links/epidemic node was used to rank nodes, e.g., ranked epidemic node

(REN) # 1 was crossed by the highest number of infective links.

When RENs were plotted against the number of epidemic cases/

week, both synchronicity and directionality were observed.

Figure 7a reveals that nodes of similar rank were engaged at the

same time and high RENs were involved before low RENs. The

number of epidemic cases grew rapidly in REN #1 and, when few or

no new cases were reported, nodes of a lower rank (RENs # 2 and

3) became active, which displayed the same pattern and were

followed, later, by nodes of an even lower functionality. In

contrast, the last class of nodes failed to spread infections: RENs #
8 and 9 only generated one case each (Figure 7a).

Relationships between pre-outbreak and post-outbreak

variables. The median distance between epidemic nodes (Figure 7b,

and Table S3) was significantly shorter in high- than in low-rank

nodes (Figure 7c). Hence, the shorter the distance between road

intersections, the higher the chance that such intersections could

spread disease, if an exotic microbe invaded.

Cost-benefit Comparisons between Models
Performance in the FMD epidemic. After TC II, 390

cases were included within epidemic nodes (Figure 8a). Within the

same timeframe, 181 cases were reported within neighborhoods

(circles of identical radius, centered on the location of all cases

reported in the first two TCs, Figure 8b). FMD epidemic nodes

were associated with a longer connectivity –longer road

segments– and a more continuous structure than those of the

contact model (Figures 8c, d).

Performance in the AI epidemic. After TC II, more than

twice as many epidemic cases (62/30) were found within the

connectivity model than within circles centered on the location of

earlier cases (Figures 9a, b). Figures 9c and d document that AI

epidemic nodes had a 3-fold longer and less fragmented road

structure than circles that did not consider connectivity.

Integration of spatial statistical, Network Theory, and

bio-geo-temporal approaches. The AI data allowed the

generation of three sets of metrics, potentially applicable in cost-

benefit analyses: 1) a spatial statistical (SS) approach, 2) a Network

Theory (NT) version, and 3) a bio-geo-temporal alternative. While the

SS version appeared to cover small circles (i.e., a low ‘cost’ per

case), because it did not consider connectivity, control measures

based on such approach should involve the cumulative areas of all

such small circles. While the NT approach considered connectiv-

ity, it covered a much larger area than the SS model because, in

NT, a cluster is defined in a different way: it includes both nodes

and edges (links) which, together, define polygonal areas rather

than small circles. These differences in concepts were visualized in

Figure 10, which also showed that the bio-geo-temporal model

integrated both SS and NT views, producing a better solution.

Under the SS model, 6 disease clusters were found (epidemic nodes

with, at least, two cases each, e.g., the 6 partially merged circles

observed across Figure 10). In this model, the ‘cost’ of preventing a

case, expressed as the area to be intervened, would be the sum of:

1) Cluster # 1 (3019 sq km/39 cases) = 77 sq km/case

2) Cluster # 2 (5030 sq km/7 cases) = 718 sq km/case

3) Cluster # 3 (6239 sq km/6 cases) = 1039 sq km/case

4) Cluster # 4 (3019 sq km/2 cases) = 1509 sq km/case

5) Cluster # 5 (7015 sq km/6 cases) = 1169 sq km/case

6) Cluster # 6 (3019 sq km/2 cases) = 1509 sq km/case

If, instead, Network Theory (NT) was considered, only a single

cluster would be observed, which would be composed of 4 nodes (the

4 partially merged epidemic nodes observed within the red pentagon,

Figure 10). In this model, connectivity among nodes could be

determined by inside- and outside-node road segments. At least

three calculations could then be generated, e.g.: 1) if it was

assumed that all within-node cases, of all nodes, would be

protected if the whole area of the cluster was intervened, the ‘cost’/

case would be = 32970/65 = 507 sq km; 2) if it was assumed that

optimal control depends on interventions covering the area defined by

epidemic nodes, the ‘cost’ would be equal to the surface of nodes #1–

4 (17,307 sq km)/number of cases within such nodes (54) or

320.5 sq km/case; or 3) if it was assumed that such intervention

would prevent all within-node cases (including those outside the

node cluster), then the ‘cost’ would be: the surface of nodes #1–4

(17,307 sq km)/all within-node cases (65) = 266.3 sq km/case.

A bio-geo-temporal analysis could integrate both SS advantages (a

small area upon which interventions are imposed) and NT

advantages (those associated with the application of NT properties,

especially, identification of highly influential nodes and direction-

ality). Such model could focus on the most influential node (ranked

epidemic node [REN] #1), which had a surface equal to

3019 sq km). If NT holds, an early intervention on such node

could prevent all within-node cases (n = 65) at a ‘cost’ of 3019/

65 = 46 sq km/case (Figure 10).

Discussion

Both epizoonotics revealed highly organized data structures

[64]. In spite of differences in microbial agent, host species,

vertebrate class, time, and geographical location, five network

properties –disease clustering, assortative mixing, synchronicity,

directionality, and Pareto’s pattern– were observed, which seemed

epidemic nodes displayed a much higher proportion of cases than average nodes, e.g., two nodes (nodes # 1 and 2, red pentagon, B) accounted for
46 (or 71%) of all within-node cases. Four road intersection areas, out of 16 (or 25%) included 80% (52/65) of all within-node cases (C). To estimate
long-range connectivity, all pairs of epidemic cases were connected with Euclidean lines, conforming a graph of N * (N –1)/2 lines, where
N = epidemic case (an infected farm), or (113 * 112)/2 = 6328 infective links (D).
doi:10.1371/journal.pone.0039778.g005
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Figure 6. Differentiation of AI epidemic nodes based on AI infective links. After overlapping epidemic nodes were merged, they were
distinguished according to the number of infective links that crossed their surfaces (A). The density of infective links/node was so high in nodes # 1–4
that the color used to identify each node’s circle is not observed: only the color of the crossing (overlaying) infective links is noticed in such nodes. The
density of infective links/epidemic node (infective links/sq km) decayed by a factor greater than 5 between node #1 and the following set of nodes
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(nodes # 2 to 4), by a factor of ,3 between nodes # 2–4 and the set that included nodes #5 and 6, and by a factor of ,2 between nodes # 5 and 6
and the remaining nodes. A significant positive correlation was found between the infective link density/sq km and the case density/sq km (r = .98,
P,0.001, B). An enlarged view of one AI epidemic node (red box, A), is shown in C.
doi:10.1371/journal.pone.0039778.g006

Figure 7. Synchronicity and directionality of AI epidemic flows and interactions between pre- and post-outbreak variables. Based on
the data reported in Figure 6a, epidemic nodes were ranked according to the number of infective links that crossed their surface, e. g., ranked epidemic
node (REN) # 1 was crossed by the highest number of infective links (A). Both synchronicity and directionality were revealed when RENs were plotted
against the weekly (log) number of epidemic cases, and several classes of epidemic nodes were distinguished. REN # 1 was engaged first, and later, it
was followed by nodes of lower ranks The epidemic flow moved from high to low RENs (directionality was observed) and, at a given point in time,
similar nodes were active (synchronicity was demonstrated). RENs #8 and 9 had no influence on epidemic dispersal: they only produced one case
each (A). An additional graph, which linked the centroids of epidemic nodes, determined the distance between pairs of highway intersection areas
that included epidemic cases (B). The median distance between such intersections was significantly shorter for high than for low RENs (C). Such
finding supported the view that critical hubs –connecting node structures, which predate epidemic occurrence and are likely to act as epidemic
nodes– may be identified even before microbial invasions occur.
doi:10.1371/journal.pone.0039778.g007
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to be highly conserved. Disease dispersal was better explained by

the connectivity-based model: after TC II, this model captured

twice as many cases as, and displayed a less fragmented and longer

length of road segments than the contact model. Connectivity also

distinguished functional classes of primary cases, nodes, and

networks.

The enhanced discrimination achieved by the connectivity

model was attributable to the use of two indicators: epidemic nodes

and infective links. With these constructs, what previously seemed to

lack ‘order’, became interpretable and revealed a major property

of biological systems: emergence (‘order’ or a high-level function

[65]). For instance, emergence was observed when the weekly

number of epidemic cases was plotted vs. the rank of epidemic nodes.

The plot shown in Figure 7a documents that the time, number,

and place of case occurrence were not random events but the

result of epidemic nodes differentiated by infective links.

The indicators evaluated only partially related to definitions

utilized in spatial statistics (SS) and Network Theory (NT). There

were differences between or among: 1) ‘spatial’ and ‘geographic’,

2) ‘mobility’ and ‘connectivity’, 3) ‘nodes’ (as defined in NT) and

epidemic nodes, 4) ‘links’ (node degrees, as defined in NT) and infective

links, 5) ‘clusters’ (as defined in SS and NT) and disease clusters, and

6) classes of primary cases, networks, and epidemic nodes.

The connectivity model revealed that not all primary cases were

connected. That finding may explain why, in the past, R0 has

overestimated some epidemics [16]: the inclusion of non-

connected cases overestimates the number of primary cases.

Because, in emerging infections (when all hosts are susceptible),

secondary cases can only be generated by some of the primary

case(s), tertiary cases can only be produced by primary or

secondary cases and so on [66], it follows that epidemic cases

are neither independent nor functionally identical: connected

primary cases are much more influential than any later case. Instead

of interventions based on identical control zones, centered on the

location of all earlier cases –i.e., the contact model, which assumes

that all earlier cases have an identical probability of disseminating

the infection to their neighbors–, interventions could consider

connected primary cases.

The data also differentiated several networks, which may

overlay and interact with one another [67]. While related, they

were not identical: the epidemic node network did not include all

road intersections, and the road intersection area network did not

include all cases.

The highly connected disease clusters found within epidemic nodes

differed from both spatial statistical (SS) and Network Theory (NT)

definitions. In SS, a cluster denotes a spatial aggregation of epidemic

cases (point data, in this study), of unknown connectivity, which

may or may not be located within epidemic nodes. In NT, a cluster

refers to groups of epidemic nodes (circles, in this study) connected by

road segments. In other words, the NT version of a cluster, which is

based on the clustering coefficient [63], is geographically larger

than the SS version. On the other hand, the SS version of a cluster

cannot identify critical nodes.

These different definitions and limitations were visually

observed. For instance, Figure 10 displays either a single cluster

composed of 4 epidemic nodes –the NT version of a cluster (red

pentagon)–, or, in the SS version, 6 clusters (the 6 epidemic nodes

that include, each, two or more cases). While compatible with both

the SS and NT approaches, the bio-geo-temporal model was more

informative: if two disease clusters displayed identical SS indices

(e.g., Moran’s I) or identical NT cluster coefficients [61], the bio-

geo-temporal approach could distinguish them in terms of

continuity, long-range connectivity, proximity, and/or transmission cycle.

Because classic NT models only consider tabular and contin-

uous data, critical geographical features –which may be fragment-

ed or discontinuous– may be missed. Such features can be

measured by the bio-geo-temporal approach which, it addition, can

estimate both directionality (not measured by SS models) and low-

and high-scale geographical variables (not measured by NT

models). Because the bio-geo-temporal model also revealed disease

clusters with outbound flows, earlier views on disease clusters,

which assume disease clusters are only recipients of infective flows

[68], could be revised.

Differentiating the functional role of epidemic nodes is crucial to

identify not only where, but also when an intervention can be most

successful. Defining the ‘critical response time’ (time available to

implement an intervention and achieve the results such interven-

tion promotes [9]) is meaningful only if associated with informa-

tion on where control measures can be applied.

Such geo-temporal information was provided in this study

because epidemic nodes were distinguished. Node differentiation was

possible because connectivity was not regarded to be synonymous

with mobility. While the non-geographical literature assumes that

mobility (the movement of people or animals, i.e., ‘contacts’) is

equal to connectivity, that literature does not assess the structure

that facilitates mobility. While ‘contacts’ are mobile, the connect-

ing structure (e.g., the riverbed of a river network) is not. This

distinction has practical effects: because in early disease dissem-

ination phases, the number of infected ‘contacts’ (mobile

individuals) is close to zero, the ‘contact’ version of connectivity

(mobility) cannot be applied at such time. However, because there

is no shortage of data on the connecting network (e. g., a road

network), early and geographically contextualized calculations can

be implemented when the focus of the analysis –and that of

interventions– is the non-mobile connecting network, as John

Snow did.

The fact that network properties may be observed in rapidly

disseminating infectious diseases, in which the number of early

cases is marginal –when information is most needed–means that,

instead of focusing on the host (e.g., case counts), better decisions

could be made if based on connectivity. To that end, Network

Theory concepts were adjusted to bio-geo-temporal formats. To

facilitate cost-benefit analyses, the definitions of epidemic node and

disease cluster differed from those of Network Theory (NT). While

nodes, in NT, are defined as dimensionless points [69], epidemic

nodes were defined as surfaces (the smallest circle containing most

cases). While, in NT, ‘cluster’ refers to sets of ‘nodes’, here

overlapping nodes were merged, i.e., a disease cluster involved both

cases and nodes. Such adjustments of NT concepts to bio-

geographical realities generated both the lowest cost (interventions

applied to the smallest circle) and the highest benefit (more

epidemic cases could be prevented), as figure 10 shows. Because

pre-outbreak data significantly correlated with post-outbreak

findings, such as the positive and significant relationship found

between infective link density/node and case density, if geo-referenced

data on all susceptible sites –farms, in this study– were available,

Figure 8. Comparison between connectivity and contact models–the FMD epizoonotic. After TC I, epidemic nodes centered on the road
network (the connectivity model) showed twice as many cases as circles of equal radius that did not consider the road network (the contact model):
while 360 cases were reported within epidemic nodes (A), 181 cases were found within the same time frame in the neighborhood of earlier cases (B).
Longer road length and less fragmentated road segments were associated with the connectivity model (C) than with the contact model (D).
doi:10.1371/journal.pone.0039778.g008
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Figure 9. Comparison between connectivity and contact models–the AI epizoonotic. The AI dispersal process was similar to that of the
FMD epidemic diffusion: after transmission cycle (TC) I, the connectivity model captured twice as many cases than the contact model (A, B). The
length of road segments found within the area determined by the connectivity model was three times longer and less fragmented than the road
structure captured by the contact model (C, D).
doi:10.1371/journal.pone.0039778.g009
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bio-geographical variables could, potentially, be measured before

a microbial invasion occurs.

While the validity of epidemic nodes and infective links was

supported, their limitations should not be ignored. Infective links

assumed that connectivity remains constant over the course of an

epidemic, which is unlikely [27]. While epidemic nodes detected

‘along-road’ disease clusters even if they were not independent –an

advantage over classic approaches [70]–, such nodes, here

assumed to be circular, may not be realistic. To improve such

constructs, future studies may consider non-circular and non-

Euclidean metrics, such as road segments and the road length

associated with each node –here measured but only partially

evaluated.

Figure 10. Three cost-benefit perspectives. The AI data allowed the generation of three sets of metrics, potentially applicable in cost-benefit
analyses. 1) While the spatial statistical (SS) model identified 6 disease clusters (the 6 epidemic nodes, of which two partially overlapped, which are
seen, within the red pentagon, as 4 circles or ovals, of different colors), because the SS approach does not offer information on directionality, control
measures should consider every epidemic node, i.e., the overall ‘cost’ of an intervention would be equal to the sum of the areas of the 6 original
epidemic nodes included in the red pentagon. 2) If a Network Theory (NT) perspective were considered, only a single cluster would be observed (the
area included within the red pentagon, which is defined by nodes and edges [road segments]). The NT model may generate several cost-benefit
metrics. 3) A bio-geo-temporal analysis can integrate both SS advantages (a small area) and NT advantages (identification of the most influential node,
based on analysis of network properties). The bio-geo-temporal model can generate the lowest ‘cost’ (smallest area to be intervened per each
prevented case). Calculations are reported in the text.
doi:10.1371/journal.pone.0039778.g010
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While disease spread may be mediated by other means, rapidly

disseminating epizoonotics appear to require pre-established

connecting networks. The integration of John Snow’s approach

–interventions neither applied on the host nor imposed on the

pathogen, but centered on connectivity– with network analysis,

seems to be feasible.
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