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Climate change impacts global ecosystems at the interface of infectious disease

agents and hosts and vectors for animals, humans, and plants. The climate is changing,

and the impacts are complex, with multifaceted e�ects. In addition to connecting

climate change and infectious diseases, we aim to draw attention to the challenges

of working across multiple disciplines. Doing this requires concentrated e�orts in

a variety of areas to advance the technological state of the art and at the same

time implement ideas and explain to the everyday citizen what is happening. The

world’s experience with COVID-19 has revealed many gaps in our past approaches to

anticipating emerging infectious diseases. Most approaches to predicting outbreaks

and identifying emerging microbes of major consequence have been with those

causing highmorbidity andmortality in humans and animals. These lagging indicators

o�er limited ability to prevent disease spillover and amplifications in new hosts.

Leading indicators and novel approaches are more valuable and now feasible,

with multidisciplinary approaches also within our grasp to provide links to disease

predictions through holistic monitoring of micro and macro ecological changes. In

this commentary, we describe niches for climate change and infectious diseases as

well as overarching themes for the important role of collaborative team science,

predictive analytics, and biosecurity. With a multidisciplinary cooperative “all call,” we

can enhance our ability to engage and resolve current and emerging problems.
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Background

In 2021, the United Nations (UN) held the 26th Climate Change Conference of the

Parties (COP26). This event pressed nations to urgently address the goals and objectives

of the Paris Accord and the UN Framework Convention on Climate Change, within the

stated UN Sustainable Development Goals. One common concern is that evolving weather

patterns and increased globalization of trade and travel will expedite climate change impacts.

Climate change and its effects on infectious diseases are a comprehensive threat and therefore

any mitigation effort must be equally comprehensive. Multidisciplinary engagements need to

increase, harnessing and reinforcing technology and creating new approaches and platforms to

identify and track climate change impacts, as a step toward mitigating their effects.

The “Frontiers” research topic, to which this manuscript is a Prolog, aims to highlight the

connection between climate change and infectious disease, focusing on scientists working at
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the local, regional and global level, where innovations in predictive

analytics using artificial intelligence (AI) and machine learning (ML)

tools can assess relevant variables of impact. AI and ML involve

processes and algorithms that are able to simulate human intelligence,

including perception, learning and problem solving. Despite these

names, AI and ML are simply approaches to data processing that

try to maximize modern computing resources and are often referred

together as AI/ML. AI/ML outputs are algorithmic models that are

uniquely able to handle complex problems with large amounts data

inputs and outputs. AI/ML models are generally developed based on

data collection, parametrization, and model learning/validation.

Climate change clearly impacts environmental biosecurity,

requiring aspects of infectious disease surveillance, animal-human-

plant health, ecology, and the environment to be studied in

concert. In addition, robust networks, based on the above

disciplines, offer agility, creativity, and trust which can accelerate

engagements through familiarity and rapport among colleagues

and peers. The elements of further multi-disciplinary and multi-

sectoral collaborations are key to furthering outputs that can be

effectively operationalized (Figure 1).

However, the variables that offer predictive insight into these

phenomena are often difficult to track and manage, let alone analyze

in real-time. The areas of interest, which are broad across and within

disciplines that use AI/ML to link climate change and infectious

disease, include studying human behaviors, exposure tracking,

monitoring of personal protective equipment (PPE), rapid drug

development, and monitoring of disease vectors induced by climate

change. Recent reviews have discussed applying AI to infectious

diseases and ML applications in microbiology as related to ecology,

microbiome, infectious disease epidemiology, and drug discovery (1–

3). Advances in AI/ML seek to make such predictive analyses more

accessible and insightful.

Infectious agents impacted by and
impacting on environmental biosecurity

Assuming a One Health view, infectious diseases affect the

ecology of hosts, vectors, and pathogens. Vibrio cholerae and Yersinia

pestis are well studied examples of predictive modeling of water-

borne and zoonotic diseases, respectively (4, 5). Plant diseases caused

by pests and microbes impact environmental biosecurity, especially

agriculture, and consequently food security across the world. Recent

changes in weather toward warm and humid conditions have favored

wheat blast outbreaks (6, 7), for example. Schistosomiasis, which is

a classic neglected tropical disease, involves multiple organisms in a

habitat where the intermediary snail population is impacted in drier

climates and temperature changes (8). Clearly, infectious diseases that

are spread to humans through non-human vectors are candidates for

changes in geographic location based on changes in climate. These

changes, seen currently as based on global rises in temperature, will

potentially affect the ability of vectors to survive, both increasing and

decreasing areas of disease prevalence. Below, we briefly discuss a

sample of infectious diseases, including vector-borne diseases, that

are intricately tied to the climate, the environment, animal reservoirs,

and vectors.

1. Sin Nombre virus is a hantavirus, spread directly from the deer

mouse (P. maniculatis) to humans in contact with these mice or

their excreta, that causes hantavirus pulmonary syndrome (HPS);

this is a rare but very serious disease, with a mortality rate of

around 40%. In 1993, there was an HPS outbreak in the “Four

Corners” region of the southwestern US. At the time, this was

an “orphan” disease, but the “Hantavirus Study Group” quickly

identified the virus and its vector. The relevance of this episode

to this paper is that the reason for the outbreak was found to be

a ten-fold increase in the vector population triggered by an El

Nino winter (heavy Winter snow and Spring run-off) leading to

abundant vegetation and food for Peromyscus (9). This outbreak

in 1993, which is a classic example of the link between climate

and infectious disease, was also the first use of newly-developed

PCR technology, applied to identifying an unknown infectious

disease. Researchers continued to study the dynamics of the

virus and environment in the Four Corners region for several

decades (10). Public health officials now regularly use climate

data to predict rodent populations and the resulting risks for

hantavirus outbreaks.

2. Lyme Disease, spread by Ixodes scapularis in the US, is the

foremost tick-borne disease in North America and is caused by

Borrelia spp. A lesser-known disease, also spread by I. scapularis,

is Powassan virus disease (POW), which was first isolated in

Powassan ON, Canada, from a child who died from encephalitis.

While Lyme is hardly trivial, POW is a very serious and often

fatal neurological disease, with long-term neurological sequelae

in survivors (11). Ixodes ticks spend most of the time out in

the environment, and so are sensitive to its moisture content

(they must not get desiccated). In addition, I. scapularis feeds on

small rodents, which are also dependent on food availability and

therefore the climate. Climate modeling studies in the US predict

future movement of I. scapularis westward and northward (12),

leading to potential POW incidence increase in novel risk areas.

3. Schistosomiasis In 2008, Utzinger and his colleagues (13)

published a discussion of the potential impact of climate change

on schistosomiasis transmission in China. Schistosoma japonicum

is one of the three major schistosome species and causes

schistosomiasis in China. The parasite is spread to humans

via contact with water in which an intermediate host snail,

Oncomelania hupensis, has released sporocysts that develop into

cercariae, the infectious form for humans. Their model, based on

forecasted temperature ranges in which the schistosome was able

to develop within the snail, predicted an expansion of schistosome

transmission into currently non-endemic areas as a result of

increased temperatures. Recently, an update was published (14)

that confirmed the earlier predictions for China, showing areas in

which transmission would increase. At the same time, those same

likely climate changes should decrease transmission in other areas

in which disease is currently prevalent. Similar predictions were

made by De Leo and colleagues for Africa, identifying regions in

which S. haematobium and S. mansoni transmission were likely to

increase or decrease with climate change.

4. Malaria is the result of infection by Plasmodium species and

is transmitted by female Anopheles mosquitoes. Six species are

known to cause the disease in humans (15), among which P.

vivax (SE Asia and western Pacific) and P. falciparum (Africa,

SE Asia and western Pacific) are the most dangerous. In 2020,

the WHO estimated ∼241 million cases globally, with 629 000

deaths; the majority of cases and deaths are in sub-Saharan Africa.

Elimination of malaria worldwide is an ultimate objective for
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FIGURE 1

Depiction of the AI/ML modeling process. Defining the analysis and function ensures an accurate and precise product.

the WHO. The Plasmodium life cycle has an exogenous sexual

phase (sporogony) which occurs in several species of Anopheles

mosquitoes, and an endogenous asexual phase (schizogony)

which takes place in the vertebrate host (16). Climate changes

have diverse effects on the Plasmodium life cycle and other

vectors such as Culex which causes West Nile Fever, where

extreme temperatures, humidity, wind, and precipitation affect

vector distribution and abundance (17). For example, increased

precipitation will expand the mosquito distribution area and

extend the length of transmission season (18). For example, the

number of human malaria infections in Eastern Africa, Nepal

and Colombia (19–21) is rising, owing to warming of these

regions, with an increase in competent malaria vectors at higher

altitudes favoring disease transmission. Consequently, highland

human populations that usually lack protective immunity are

more vulnerable to severe malaria morbidity and mortality (22).

Of course, although malaria transmission is climate-sensitive, like

many other infections, it is a complex disease and changes in

transmission cannot be attributed to climate alone (23, 24).

5. Valley fever: Valley fever is the common name for

Coccidiodomycosis, a flu-like illness caused by a pathogenic

fungus (Cocccidiodes spp). It is endemic in the southwestern

United States and outbreaks often follow weather periods in

which wet spells are followed by dry periods (10). The fungus

grows in the wet period and spores that form when the land dries

are easily spread through inhalation in dust clouds. A recent

modeling analysis (25) predicts, in a high-warming scenario, that

the disease will become endemic in an additional 5 states in the

Western North US, with cases jumping by 50% by 2,100. Whether

all of this will come to pass is uncertain, but the disease has

recently spread to south central Washington State (26) and, with

warming continuing through this century, at least some of this

scenario seems likely to occur. In another nod to climate effects,

a tsunami has also been suggested as a cause for the spread of

this disease.

Monitoring of disease vectors and
climate resiliency

Collectively, vector-borne disease cases, for various reasons, have

increased by 300% in the Americas over the last decade (27). Despite

the already large impact of vector-borne diseases on global public

health, morbidity and mortality will likely increase in the coming

decades due to a now more rapidly-changing climate. Broad changes

in temperature, wetness, and vegetation will all affect the prevalence

of mosquitoes and the diseases they carry and drive them into entirely

new geographic areas. Weather phenomena induced or exacerbated

by climate change often coincide with increases in activity of disease

vectors. For example, floods are some of the most devastating

disasters induced by climate change in terms of physical damage

and their ability to activate key disease vectors, such as mosquitos
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and wastewater exposure. Effectively predicting andmonitoring these

events is crucial in order to maintain global health. These phenomena

are incredibly complex with many factors to consider but AI/ML can

offer a pathway to effectively predicting floods and monitoring their

effects (28). One example of AI/ML flood analytics in practice is from

the company Ambiental Risk Analytics (https://www.ambientalrisk.

com/).

The importance of genome research

A panel discussion was recently published that emphasizes the

value of genomic sequencing as a tool for addressing climate change

and infectious disease with a One Health approach. One particular

focus was how organisms shift and evolve during environmental

change and its related complexities (29). When genomic sequencing

tools are combined with risk and monitoring management efforts, an

effective framework can be designed to illustrate priorities at multiple

levels of impact (30). This combination of multi-disciplinary and

multi-sectoral resources, as well as advances in predictive analytics

using artificial intelligence and machine learning (AI/ML) tools,

offers unique opportunities for effective approaches to exploring

these problems.

Environmental disasters in which man-made infrastructures may

impact climate factors also influence infectious disease outbreaks

from resulting disruption of ecosystems, flooding, contamination,

and displacement of human populations (31). These factors may

cause increases (or decreases) in disease transmission as well as

outbreaks which may produce chronic effects over time. Next

generation studies, especially those that identify immediate risk

factors and mitigation strategies combined with rapid genome

identification will be increasingly valuable in the future.

Partnerships: Need for
multi-disciplinary engagement and
building robust networks

Scientific collaboration networks can exist formally or informally

and can focus on any given specific disease topic, a technology

such as genomics and sequencing, or an emerging field such as

ecoimmunology. One of the best ways of creating sustainable

capabilities within countries is to connect researchers and the

technical professionals together enabling cooperation or sharing

expertise and information (32, 33). Research designed to tackle

more global and complex challenges requires multidisciplinary

teams that cross potentially more than a dozen fields in one

project and bring together multiple technologies and data streams.

This complexity in science teams requires a new look at how to

better cooperate, collaborate, coordinate, and communicate (34).

Informal networks are the connections, professional relationships,

and source of contacts that scientists often leverage throughout

their careers. These contacts include fellow researchers, peer

colleagues, andmentor/mentees that connect at scientific conferences

and related collaborations. These scientists maintain informal

networks independently.

As science becomes more multidisciplinary across disparate

fields, the breadth of the informal networks between researchers

is becoming larger and more diverse. For example, infectious

disease research requires understanding the ecology of an emerging

or endemic infectious disease system where epidemiologists may

work with meteorologists, sociologists, wildlife biologists, and

geographers. With unlimited access between researchers through the

internet, general connections are not endangered, however, trusted

relationships and sustained connections are rarer. Cooperative

engagement research is designed to build trusting and long-term

relationships. The COVID-19 pandemic has led to an unprecedented

amount of work and it was through the trusted collaborations that

existed prior to the pandemic, that the critical initial data and

information on the coronavirus was shared. Also, with the COVID-

19 pandemic, most networks have had to move to become virtual

networks. Having a low-cost virtual platform for connecting can help

networks become sustainable into the future if and when funding

ends. Despite these changes in connectivity and potential lowering

costs to collaborate, resources specifically funding, remain a critical

hurdle to sustain meaningful research.

During infectious disease outbreaks, both formal and informal

networks are critical for a rapid and coordinated response. As it is

often repeated, “if you exchange business cards on the first day of an

outbreak, the pathogen has already won”. The return of investment

for cooperative engagement programs became evident immediately

in the 2020 COVID-19 pandemic (33). As the world moves into the

future challenges of both a rapidly changing climate and increase

threat of infectious diseases, scientific networks must be designed

to be sustainable from the beginning and have a core vision of

remaining sustainable.

Predictive analytics—Artificial
intelligence and machine learning

Each AI/ML model requires large and varied datasets for

development, implementation and validation. For climate change

and infectious disease surveillance, these data can be gathered from

new research or existing datasets. Data are parametrized for use

in the AI/ML so the relationships and key variables that model

will investigate can be defined. Multiple parameters can be used

at once, and often models need to be optimized simultaneously

in a process referred to as multi-parameter optimization (35). The

training for and validation of ML is generally performed using

methods for supervised, unsupervised, or reinforcement machine

learning. Supervised machine learning employs a fully labeled dataset

that the model then uses to determine the relationship between

inputs and outputs, while unsupervised machine learning uses

unlabelled data to determine patterns and relationships among the

dataset. Reinforcement machine learning uses a computer-video

gamemethod of trial and error to determine the best decision-making

process. These processes also involve algorithm models to process

data, where some common ML algorithms are naïve bayes, support

vector machines, random forest, or artificial neural networks (36–38).

To validate the AI/ML model its results are compared to a section

of the original training dataset that was not inputted during the

training process. Using these approaches AI/ML has shown itself to

be invaluable at the intersection of climate change and infectious

disease applications in surveillance, prediction, forecasting, research

and development.
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Tracking human behaviours

One of the most prescient effects imposed by climate change

is the temporary or permanent displacement of people due to

climate induced disasters. As recent history has demonstrated, places

that serve as nexus points for large traveling groups of people,

such as ports of entry, refugee camps, and disaster locations are

extremely potent vectors of new disease spread (39, 40). The term

biosurveillance has broad meanings and different connotations

depending on whether the context is animal, human, plant

or microbes. Accounting for human behavior in an immediate

fashion has been difficult due to the multitude of other factors

involved; however, with advances in AI/ML analysis, this type of

bio-surveillance can sometimes be performed rapidly and non-

intrusively. Acceptable examples of such technology range from

consumer marketing and internet search preferences to digital

exposure tracking and PPE monitoring. At the same time, constant

direct monitoring through national government also has its value but

often varies substantially in quality, depending on political will and

resource availability.

Climate and disease forecasting

Vector-borne diseases are particularly susceptible to climate

impacts, as they depend on dynamic ecosystems. Complex

interactions between weather, hydrology, vegetation, and the

surrounding ecosystem, as well as human-created habitats impacted

by economics and infrastructure can cause vector activity to explode

or collapse. Vector ecosystems also vary by geographic locations with

predictability in one region having no predictive value in another

region. There are many challenges in being able to forecast and

predict short- and long-term changes of climate-driven infectious

diseases. Integrating the diverse causes of changes in vector ranges

and resulting transmission of infectious diseases into a more

modular computational model that covers climate, environmental

and vector changes is a complex task (41). The challenge is to have

a fine-scale prediction of mosquito-borne diseases, for example,

that is flexible enough to integrate disparate, imperfect data and

generate new predictions on demand as climate models improve

and adapt to new data. Being able to forecast and predict mosquito

borne diseases, such as Dengue and Chikungunya virus will help

align bio-surveillance efforts to track the progression of the disease

into new territory. Combining climate and environmental science

and disease epidemiology and ecology will be critical for knowing

where infections might move in the future and how we can be better

prepared to mitigate and track these advancing threats.

Exposure tracking

Digital exposure tracking is a technology that came into wide

use during the COVID-19 pandemic as a way to warn of potential

exposure, provide contact tracing, and give out quarantine guidance.

AI/ML was necessary in this instance to manage the need for rapid

response times and large volumes of data that include tracking

individual health information, contact between personal devices (i.e.,

cell phones), GPS, and cell towers. Digital exposure tracking also

has higher accuracy than traditional exposure tracking that is largely

based on human recollection. Using all of these data filtered through

an AI/ML algorithm, authorities are able to effectively monitor the

risk of infection and act quickly in order to mitigate any exposures

(42, 43).

One example of successful implementation of digital exposure

tracking during the COVID-19 pandemic is the approach

implemented by Taiwan. At the beginning of the pandemic,

the Taiwanese government rapidly created a system that allowed for

rapid communication between government agencies and individuals

allowing for the quantification of potential infection risk. With

this system, the cases were able to be contained far below those

predicted by initial fears (44). As infectious disease outbreaks shift

between diseases, with the 2022 Monkeypox global outbreak being

an example, the tracking technologies instituted for COVID-19, can

be readily adapted for use in these new situations.

PPE monitoring

With the demonstrated effectiveness of PPE in preventing the

spread of disease, it is crucial to ensure that in high-risk areas the

proper preventative measures are taken (45). AI/ML can be used to

track PPE usage and/or monitor for potential exposure due to PPE

failure through the use of machine vision. Machine vision allows for

an AI/ML monitoring system to recognize and record visual stimuli,

allowing for real time monitoring of the relevant parameters. This

technology already has established uses in the area of hazardous

workplace PPE monitoring. One example is AIM2 by agile labs

(https://www.aim2.info/ppemonitoring/). This program is trained to

recognize hard hats, safety vests, and goggles and give warnings if it

detects such items are not in use. It also catalogs potential breaches

for liability purposes.

Rapid drug development

Climate change will affect the behavior and activity of disease

reservoirs and vectors such as mosquitoes and ticks (46). This in

turn will increase the likelihood for outbreaks of disease and/or the

appearance of novel disease strains. The response to these potential

disease events needs to involve a more rapid and comprehensive

response than traditional drug development can provide. AI/ML

(often referred to in a drug development context as in silico drug

development) can provide the tools to overcome this challenge.

AI/ML drug development can analyze existing drugs for effectiveness

against new disease agent strains (47, 48), optimize new drugs for

desired characteristics such as adsorption, distribution, metabolism,

elimination, and toxicity (ADMET) (37), and develop completely

novel treatments such as antibodies and vaccines (49, 50).

A specific example of how AI/ML speeds up the drug

development process is demonstrated by the AI/ML biotech firm

AbCellera partnering with Eli Lily to rapidly develop anti-COVID

antibody treatments (51). AbCellera used ML to identify therapeutic

antibodies from a convalescent SARS-CoV-2 patient by screening

5.8 million peripheral blood cells (PBMCs) to produce 440 high

confidence antibody sequences. ML was further used to select the

promising antibodies that appeared in high frequency across the

dataset and eventually narrowed down the field to 24 lead candidates

that were then tested for in vitro study. The ML process took place in
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under a month and resulted in the production of LY-CoV555 which

showed success in non-human primates (NHPs) at neutralizing

the virus.

Conclusions

Even under the most optimistic projections, the climate will

be noticeably variable over a period of decades or years rather

than centuries, pushing us into a constantly changing public health

landscape in part due to increased data collection. We are faced

with a new “non-equilibrium” global health crisis. Climate change

clearly impacts infectious disease and biosecurity generally, requiring

aspects of bio-surveillance, animal-human-plant health, ecology, and

environment to be studied in concert. With limited resources and

political will, the reactive response posture nevertheless remains a

mainstay of the national and international approach to infectious

diseases for humans, animals, and plants. Otherwise, the continual

reactive response to infectious disease research severely limits

our ability to prepare for, detect, and respond to any outbreaks.

A successful top-down approach requires unprecedented national

multi-agency to multi-sectoral and multi-disciplinary cooperation.

Climate change does not choose ownership, so this challenge requires

world-wide contribution and engagement. On one hand, COVID-

19 demonstrated inter-governmental and multi-national cooperation

to an urgent and compelling extent but, at the same time, climate

change is so complex that future challenges may neither be evident

nor approachable with current tools.

Moving from disparate data sets—to information—to actionable

decisions is now possible with predictive analytics methods.

Converging data, analytic approaches, and technology offers ways to

identify threats, close gaps, and remediate threats. A proactive data

driven analytical method that predicts biothreats before they become

a problem is now both feasible and necessary. Work demonstrating

successful outputs and returns on investments in predictive analytics,

such as design-build-learn-train models, as well as public-private

partnerships and how such work may be pivoted to mitigate climate

change impacts, will be especially relevant.

Managing public health emergencies effectively requires several

practical issues to be resolved, including common standards for

data collection, common data handling systems and interoperability,

and common public health IT infrastructure. This applies within

a particular country but, given the international nature of climate

effects on public health, it also needs to apply globally among

countries. Many high income countries have developed common

national public health standards but these do not always mesh

with those from other countries (52) and many countries still have

fragmented public health systems. The World Health Organization

(WHO) is the most visible entity involved in global health data

collection and its “SCORE” system is one useful approach to

assistingmember states strengthen health data collection and sharing.

Nevertheless, not every country seems prepared to operate through

the WHO, which lessens its usefulness and potential impact.

Given the lack of global international agreement on next steps to

counter climate change, it will be difficult to gainmomentum on what

to do about its effects.
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