86 research outputs found

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 3. Site Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations. When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps. ●Step 1 describes the process of defining site-level restoration objectives. ●Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting. ●Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models. ●Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success. ●Step 5 is a brief discussion of how weather before and after treatments may impact restoration success. ●Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage-grouse. We discuss when passive restoration options may be sufficient and when active restoration may be necessary to achieve restoration objectives. ●Step 7 addresses decisions regarding post-restoration livestock grazing management. ●Step 8 addresses monitoring of the restoration; we discuss important aspects associated with implementation monitoring as well as effectiveness monitoring. ●Step 9 takes the information learned from monitoring to determine how restoration actions in the future might be adapted to improve restoration success

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 2. Landscape Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. Land managers do not have resources to restore all locations because of the extent of the restoration need and because some land uses are not likely to change, therefore, restoration decisions made at the landscape to regional scale may improve the effectiveness of restoration to achieve landscape and local restoration objectives. We present a landscape restoration decision tool intended to assist decision makers in determining landscape objectives, to identify and prioritize landscape areas where sites for priority restoration projects might be located, and to aid in ultimately selecting restoration sites guided by criteria used to define the landscape objectives. The landscape restoration decision tool is structured in five sections that should be addressed sequentially. Each section has a primary question or statement followed by related questions and statements to assist the user in addressing the primary question or statement. This handbook will guide decision makers through the important process steps of identifying appropriate questions, gathering appropriate data, developing landscape objectives, and prioritizing landscape patches where potential sites for restoration projects may be located. Once potential sites are selected, land managers can move to the site-specific decision tool to guide restoration decisions at the site level

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 1. Concepts for Understanding and Applying Restoration

    Get PDF
    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of restoration techniques for sage-grouse habitat restoration. We conclude with a description of the critical nature of monitoring for adaptive management of sagebrush steppe restoration at landscape- and project-specific levels

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Somatic and cognitive-affective depressive symptoms among patients with heart disease: differences by sex and age

    Get PDF
    OBJECTIVE: this study investigated the association of somatic and cognitive-affective symptoms with sex and age, among patients hospitalized with heart disease. METHOD: this study was a secondary analysis of two previous observational studies totaling 531 patients with heart disease, hospitalized from 2005 to 2011 in two public hospitals in Ribeirão Preto, state of São Paulo, Brazil. Somatic and cognitive-affective symptoms were assessed using the subscales of the Beck Depression Inventory - I (BDI-I). RESULTS: of 531 participants, 62.7% were male, with a mean age 57.3 years (SD= 13.0) for males and 56.2 years (SD= 12.1) for females. Analyses of variance showed an effect of sex (p<0.001 for somatic and p=0.005 for cognitive-affective symptoms), but no effect of age. Women presented with higher mean values than men in both BDI-I subscales: 7.1 (4.5) vs. 5.4 (4.3) for somatic, and 8.3 (7.9) vs. 6.7 (7.2) for cognitive-affective symptoms. There were no differences by age for somatic (p=0.84) or cognitive-affective symptoms (p=0.84). CONCLUSION: women hospitalized with heart disease had more somatic and cognitive-affective symptoms than men. We found no association of somatic and cognitive-affective symptoms with age. Future research for these patients could reveal whether these differences according to sex continue throughout the rehabilitation process

    The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer

    Get PDF
    The etiology of familial breast cancer is complex and involves genetic and environmental factors such as hormonal and lifestyle factors. Understanding familial aggregation is a key to understanding the causes of breast cancer and to facilitating the development of effective prevention and therapy. To address urgent research questions and to expedite the translation of research results to the clinical setting, the National Cancer Institute (USA) supported in 1995 the establishment of a novel research infrastructure, the Breast Cancer Family Registry, a collaboration of six academic and research institutions and their medical affiliates in the USA, Canada, and Australia. The sites have developed core family history and epidemiology questionnaires, data dictionaries, and common protocols for biospecimen collection and processing and pathology review. An Informatics Center has been established to collate, manage, and distribute core data. As of September 2003, 9116 population-based and 2834 clinic-based families have been enrolled, including 2346 families from minority populations. Epidemiology questionnaire data are available for 6779 affected probands (with a personal history of breast cancer), 4116 unaffected probands, and 16,526 relatives with or without a personal history of breast or ovarian cancer. The biospecimen repository contains blood or mouthwash samples for 6316 affected probands, 2966 unaffected probands, and 10,763 relatives, and tumor tissue samples for 4293 individuals. This resource is available to internal and external researchers for collaborative, interdisciplinary, and translational studies of the genetic epidemiology of breast cancer. Detailed information can be found at the URL http://www.cfr.epi.uci.edu/

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Addressing the climate challenge

    Get PDF
    In 2021, colleagues from across the University of Birmingham community were invited to write articles about topics relevant to the COP26 climate change summit. In this series of articles, experts from across many different disciplines provide new insight and evidence on how we might all understand and tackle climate change

    Association of beverage consumption with obesity in Mexican American children

    No full text
    ObjectiveTo determine the association of beverage consumption with obesity in Mexican American school-aged children.DesignCross-sectional study using the baseline data from a cohort study. Mothers and children answered questions about the frequency and quantity of the child's consumption of soda, diet soda, other sugar-sweetened beverages, 100% fruit juice, milk and water. The questions were adapted from the Youth/Adolescent FFQ. Children were weighed and measured. Data were collected on the following potential confounders: maternal BMI, household income, maternal education, maternal occupational status, maternal acculturation, child physical activity, child screen time and child fast-food consumption. Logistic regression was used to examine the association between servings (240 ml) of each beverage per week and obesity (BMI ≥ 95th percentile).SettingParticipants were recruited from among enrolees of the Kaiser Permanente Health Plan of Northern California. Data were collected via an in-home assessment.SubjectsMexican American children (n 319) aged 8-10 years.ResultsAmong participants, 20% were overweight and 31% were obese. After controlling for potential confounders, consuming more servings of soda was associated with increased odds of obesity (OR = 1·29; P &lt; 0·001). Consuming more servings of flavoured milk per week was associated with lower odds of obesity (OR = 0·88; P = 0·004). Consumption of other beverages was not associated with obesity in the multivariate model.ConclusionsDiscouraging soda consumption among Mexican American children may help reduce the high obesity rates in this population
    corecore