73 research outputs found
Quantitative Fluorescence Imaging Approach for the Study of Polyploidization in Hepatocytes
International audienc
The Coactivator PGC-1 Is Involved in the Regulation of the Liver Carnitine Palmitoyltransferase I Gene Expression by cAMP in Combination with HNF4α and cAMP-response Element-binding Protein (CREB)
International audienceLiver carnitine palmitoyltransferase I catalyzes the transfer of long-chain fatty acids into mitochondria. L-CPT I is considered the rate-controlling enzyme in fatty acid oxidation. Expression of the L-CPT I gene is induced by starvation in response to glucagon secretion from the pancreas, an effect mediated by cAMP. Here, the molecular mechanisms underlying the induction of L-CPT I gene expression by cAMP were characterized. We demonstrate that the cAMP response unit of the L-CPT I gene is composed of a cAMP-response element motif and a DR1 sequence located 3 kb upstream of the transcription start site. Our data strongly suggest that the coactivator PGC-1 is involved in the regulation of this gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB). Indeed, (i) cotransfection of CREB or HNF4α dominant negative mutants completely abolishes the effect of cAMP on the L-CPT I promoter, and (ii) the cAMP-responsive unit binds HNF4α and CREB through the DR1 and the cAMP-response element sequences, respectively. Moreover, cotransfection of PGC-1 strongly activates the L-CPT I promoter through HNF4α bound at the DR1 element. Finally, we show that the transcriptional induction of the PGC-1 gene by glucagon through cAMP in hepatocytes precedes that of L-CPT-1. In addition to the key role that PGC-1 plays in glucose homeostasis, it may also be critical for lipid homeostasis. Taken together these observations suggest that PGC-1 acts to coordinate the process of metabolic adaptation in the liver
Structural and functional characterizations of the 5'-flanking region of the mouse glucagon receptor gene: comparison with the rat gene.
International audienc
Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis
International audienceMyocardial fibrosis contributes to the remodeling of heart and the loss of cardiac function leading to heart failure. SRF is a transcription factor implicated in the regulation of a large variety of genes involved in cardiac structure and function. To investigate the impact of an SRF overexpression in heart, we developed a new cardiac-specific and tamoxifen-inducible SRF overexpression mouse model by the Cre/loxP strategy. Here, we report that a high level over-expression of SRF leads to severe modifications of cardiac cytoarchitecture affecting the balance between cardiomyocytes and cardiac fibroblasts and also a profound alteration of cardiac gene expression program. The drastic development of fibrosis was characterized by intense sirius red staining and associated with an increased expression of genes encoding extracellular matrix proteins such as fibronectin, procollagen type 1α1 and type 3α1 and especially connective tissue growth factor (CTGF). Furthermore miR-133a, one of the most predominant cardiac miRNAs, is strongly downregulated when SRF is overexpressed. By comparison a low level overexpression of SRF has minor impact on these different processes. Investigation with miR-133a, antimiR-133a and AdSRF-VP16 experiments in H9c2 cardiac cells demonstrated that: 1)âmiR-133a acts as a repressor of SRF and CTGF expression ; 2)âa simultaneous overexpression of SRF by AdSRF-VP16 and inhibition of miR-133a by a specific antimiR increase CTGF expression; 3)âmiR-133a overexpression can block the upregulation of CTGF induced by AdSRF-VP16. Taken together, these findings reveal a key role of the SRF/CTGF/miR-133a axis in the regulation of cardiac fibrosis
Retroviral Infection of Primary Hepatocytes from Normal Mice and Mice Transgenic for SV40 Large T Antigen
International audienc
Vanadate increases L-type pyruvate kinase mRNAs level in adult rat hepatocytes in primary culture
In primary culture of adult rat hepatocytes, vanadate in the presence of glucose stimulates the expression of the liver (L-type) pyruvate kinase gene. Glucose by itself was inactive, and vanadate, like insulin, was also inefficient in the absence of glucose. Similar results were obtained on glucokinase gene expression. An analogue of cAMP, 8-(4-chlorophenylthio)-cAMP, inhibited the production of L-type pyruvate kinase and glucokinase mRNAs in the presence of glucose plus vanadate
Interrelation between α-Cardiac Actin Treadmilling and Myocardin-Related Transcription Factor-A Nuclear Shuttling in Cardiomyocytes
International audienceMyocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics that are controlled by Rho GTPases. SRF is a ubiquitous transcription factor strongly expressed in muscular tissues. The depletion of SRF in the adult mouse heart leads to severe dilated cardiomyopathy associated with the down-regulation of target genes encoding sarcomeric proteins including α-cardiac actin. The regulatory triad, composed of SRF, its cofactor MRTFA and actin, plays a major role in the coordination of the nuclear transcriptional response to adapt actin filament dynamics associated with changes in cell shape, and contractile and migratory activities. Most of the knowledge on the regulation of the SRFâMRTFâActin axis has been obtained in non-muscle cells with α-actin and smooth muscle cells with α-smooth actin. Here, we visualized for the first time by a time-lapse video, the nucleocytoplasmic shuttling of MRTFA induced by serum or pro-hypertrophic agonists such as angiotensin II, phenylephrine and endothelin-1, using an MRTFA-GFP adenovirus in cultures of neonatal rat cardiomyocytes. We showed that an inhibitor of the RhoA/ROCK signaling pathway leads to an α-cardiac actin polymerization disruption and inhibition of MRTFA nucleocytoplasmic shuttling. Moreover, inhibition of the PI3K/Akt signaling pathway also prevents the entry of MRTFA into the nuclei. Our findings point out a central role of the SRFâMRTFAâactin axis in cardiac remodeling
Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor α (PPARα)-independent pathway
International audienc
Vanadate increases L-type pyruvate kinase mRNAs level in adult rat hepatocytes in primary culture
In primary culture of adult rat hepatocytes, vanadate in the presence of glucose stimulates the expression of the liver (L-type) pyruvate kinase gene. Glucose by itself was inactive, and vanadate, like insulin, was also inefficient in the absence of glucose. Similar results were obtained on glucokinase gene expression. An analogue of cAMP, 8-(4-chlorophenylthio)-cAMP, inhibited the production of L-type pyruvate kinase and glucokinase mRNAs in the presence of glucose plus vanadate
- âŠ