221 research outputs found

    Control of partial coalescence of self-assembled metal nano-particles across lyotropic liquid crystals templates towards long range meso-porous metal frameworks design

    Full text link
    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation

    WMAP data and the curvature of space

    Get PDF
    Inter alia, the high precision WMAP data on Cosmic Microwave Background Radiation marginally indicate that the universe has positively curved (and hence spherical) spatial sections. In this paper, we take this data seriously and consider some of the consequences for the background dynamics. In particular, we show that this implies a limit to the number of e-foldings that could have taken place in the inflationary epoch; however this limit is consistent with some inflationary models that solve all the usual cosmological problems and are consistent with standard structure formation theory.Comment: 4 pages, 2 figure

    Exact two-time correlation and response functions in the one-dimensional coagulation-diffusion process by the empty-interval-particle method

    Full text link
    The one-dimensional coagulation-diffusion process describes the strongly fluctuating dynamics of particles, freely hopping between the nearest-neighbour sites of a chain such that one of them disappears with probability 1 if two particles meet. The exact two-time correlation and response function in the one-dimensional coagulation-diffusion process are derived from the empty-interval-particle method. The main quantity is the conditional probability of finding an empty interval of n consecutive sites, if at distance d a site is occupied by a particle. Closed equations of motion are derived such that the probabilities needed for the calculation of correlators and responses, respectively, are distinguished by different initial and boundary conditions. In this way, the dynamical scaling of these two-time observables is analysed in the longtime ageing regime. A new generalised fluctuation-dissipation ratio with an universal and finite limit is proposed.Comment: 31 pages, submitted to J.Stat.Mec

    Programmatic options for monitoring malaria in elimination settings: easy access group surveys to investigate Plasmodium falciparum epidemiology in two regions with differing endemicity in Haiti.

    Get PDF
    BACKGROUND: As in most eliminating countries, malaria transmission is highly focal in Haiti. More granular information, including identifying asymptomatic infections, is needed to inform programmatic efforts, monitor intervention effectiveness, and identify remaining foci. Easy access group (EAG) surveys can supplement routine surveillance with more granular information on malaria in a programmatically tractable way. This study assessed how and which type of venue for EAG surveys can improve understanding malaria epidemiology in two regions with different transmission profiles. METHODS: EAG surveys were conducted within the departments of Artibonite and Grand'Anse (Haiti), in regions with different levels of transmission intensity. Surveys were conducted in three venue types: primary schools, health facilities, and churches. The sampling approach varied accordingly. Individuals present at the venues at the time of the survey were eligible whether they presented malaria symptoms or not. The participants completed a questionnaire and were tested for Plasmodium falciparum by a highly sensitive rapid diagnostic test (hsRDT). Factors associated with hsRDT positivity were assessed by negative binomial random-effects regression models. RESULTS: Overall, 11,029 individuals were sampled across 39 venues in Artibonite and 41 in Grand'Anse. The targeted sample size per venue type (2100 in Artibonite and 2500 in Grand'Anse) was reached except for the churches in Artibonite, where some attendees left the venue before they could be approached or enrolled. Refusal rate and drop-out rate were < 1%. In total, 50/6003 (0.8%) and 355/5026 (7.1%) sampled individuals were hsRDT positive in Artibonite and Grand'Anse, respectively. Over half of all infections in both regions were identified at health facilities. Being male and having a current or reported fever in the previous 2 weeks were consistently identified with increased odds of being hsRDT positive. CONCLUSIONS: Surveys in churches were problematic because of logistical and recruitment issues. However, EAG surveys in health facilities and primary schools provided granular information about malaria burden within two departments in Haiti. The EAG surveys were able to identify residual foci of transmission that were missed by recent national surveys. Non-care seeking and/or asymptomatic malaria infections can be identified in this alternative surveillance tool, facilitating data-driven decision-making for improved targeting of interventions

    Renewing Felsenstein’s phylogenetic Bootstrap in the era of big data

    Get PDF
    Felsenstein’s application of the bootstrap method to evolutionary trees is one of the most cited scientific papers of all time. The bootstrap method, which is based on resampling and replications, is used extensively to assess the robustness of phylogenetic inferences. However, increasing numbers of sequences are now available for a wide variety of species, and phylogenies based on hundreds or thousands of taxa are becoming routine. With phylogenies of this size Felsenstein’s bootstrap tends to yield very low supports, especially on deep branches. Here we propose a new version of the phylogenetic bootstrap in which the presence of inferred branches in replications is measured using a gradual ‘transfer’ distance rather than the binary presence or absence index used in Felsenstein’s original version. The resulting supports are higher and do not induce falsely supported branches. The application of our method to large mammal, HIV and simulated datasets reveals their phylogenetic signals, whereas Felsenstein’s bootstrap fails to do so

    High-throughput malaria serosurveillance using a one-step multiplex bead assay.

    Get PDF
    BACKGROUND: Serological data indicating the presence and level of antibodies against infectious disease antigens provides indicators of exposure and transmission patterns in a population. Laboratory testing for large-scale serosurveys is often hindered by time-consuming immunoassays that employ multiple tandem steps. Some nations have recently begun using malaria serosurveillance data to make inferences about the malaria exposure in their populations, and serosurveys have grown increasingly larger as more accurate estimates are desired. Presented here is a novel approach of antibody detection using bead-based immunoassay that involves incubating all assay reagents concurrently overnight. RESULTS: A serosurvey in was performed in Haiti in early 2017 with both sera (n = 712) and dried blood spots (DBS, n = 796) collected for the same participants. The Luminex¼ multiplex bead-based assay (MBA) was used to detect total IgG against 8 malaria antigens: PfMSP1, PvMSP1, PmMSP1, PfCSP, PfAMA1, PfLSA1, PfGLURP-R0, PfHRP2. All sera and DBS samples were assayed by MBA using a standard immunoassay protocol with multiple steps, as well a protocol where sample and all reagents were incubated together overnight-termed here the OneStep assay. When compared to a standard multi-step assay, this OneStep assay amplified the assay signal for IgG detection for all 8 malaria antigens. The greatest increases in assay signal were seen at the low- and mid-range IgG titers and were indicative of an enhancement in the analyte detection, not simply an increase in the background signal of the assay. Seroprevalence estimates were generally similar for this sample Haitian population for all antigens regardless of serum or DBS sample type or assay protocol used. CONCLUSIONS: When using the MBA for IgG detection, overnight incubation for the test sample and all assay reagents greatly minimized hands-on time for laboratory staff. Enhanced IgG signal was observed with the OneStep assay for all 8 malaria antigens employed in this study, and seroprevalence estimates for this sample population were similar regardless of assay protocol used. This overnight incubation protocol has the potential to be deployed for large-scale malaria serosurveys for the high-throughput and timely collection of antibody data, particularly for malaria seroprevalence estimates

    Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti.

    Get PDF
    Measuring antimalarial antibodies can estimate transmission in a population. To compare outputs, standardized laboratory testing is required. Here we describe the in-country establishment and quality control (QC) of a multiplex bead assay (MBA) for three sero-surveys in Haiti. Total IgG data against 21 antigens were collected for 32,758 participants. Titration curves of hyperimmune sera were included on assay plates, assay signals underwent 5-parameter regression, and inspection of the median and interquartile range (IQR) for the y-inflection point was used to determine assay precision. The medians and IQRs were similar for Surveys 1 and 2 for most antigens, while the IQRs increased for some antigens in Survey 3. Levey-Jennings charts for selected antigens provided a pass/fail criterion for each assay plate and, of 387 assay plates, 13 (3.4%) were repeated. Individual samples failed if IgG binding to the generic glutathione-S-transferase protein was observed, with 659 (2.0%) samples failing. An additional 455 (1.4%) observations failed due to low bead numbers (<20/analyte). The final dataset included 609,438 anti-malaria IgG data points from 32,099 participants; 96.6% of all potential data points if no QC failures had occurred. The MBA can be deployed with high-throughput data collection and low inter-plate variability while ensuring data quality

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz

    Selection of Antibody Responses Associated With Plasmodium falciparum Infections in the Context of Malaria Elimination.

    Get PDF
    In our aim to eliminate malaria, more sensitive tools to detect residual transmission are quickly becoming essential. Antimalarial antibody responses persist in the blood after a malaria infection and provide a wider window to detect exposure to infection compared to parasite detection metrics. Here, we aimed to select antibody responses associated with recent and cumulative exposure to malaria using cross-sectional survey data from Haiti, an elimination setting. Using a multiplex bead assay, we generated data for antibody responses (immunoglobulin G) to 23 Plasmodium falciparum targets in 29,481 participants across three surveys. This included one community-based survey in which participants were enrolled during household visits and two sentinel group surveys in which participants were enrolled at schools and health facilities. First, we correlated continuous antibody responses with age (Spearman) to determine which showed strong age-related associations indicating accumulation over time with limited loss. AMA-1 and MSP-119 antibody levels showed the strongest correlation with age (0.47 and 0.43, p < 0.001) in the community-based survey, which was most representative of the underlying age structure of the population, thus seropositivity to either of these antibodies was considered representative of cumulative exposure to malaria. Next, in the absence of a gold standard for recent exposure, we included antibody responses to the remaining targets to predict highly sensitive rapid diagnostic test (hsRDT) status using receiver operating characteristic curves. For this, only data from the survey with the highest hsRDT prevalence was used (7.2%; 348/4,849). The performance of the top two antigens in the training dataset (two-thirds of the dataset; n = 3,204)-Etramp 5 ag 1 and GLURP-R0 (area-under-the-curve, AUC, 0.892 and 0.825, respectively)-was confirmed in the test dataset (remaining one-third of the dataset; n = 1,652, AUC 0.903 and 0.848, respectively). As no further improvement was seen by combining seropositivity to GLURP-R0 and Etramp 5 ag 1 (p = 0.266), seropositivity to Etramp 5 ag 1 alone was selected as representative of current or recent exposure to malaria. The validation of antibody responses associated with these exposure histories simplifies analyses and interpretation of antibody data and facilitates the application of results to evaluate programs

    Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A

    Get PDF
    We present gamma-ray observations with the LAT on board the Fermi Gamma-Ray Telescope of the nearby radio galaxy Centaurus~A. The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen~A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (\G=2.67\pm0.10_{stat}\pm0.08_{sys} where the photon flux is \Phi\propto E^{-\G}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TANAMI) program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004-2008. The fit requires a low Doppler factor, in contrast to BL Lacs which generally require larger values to fit their broadband SEDs. This indicates the \g-ray emission originates from a slower region than that from BL Lacs, consistent with previous modeling results from Cen~A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow.Comment: Accepted by ApJ. 32 pages, 5 figures, 2 tables. J. Finke and Y. Fukazawa corresponding author
    • 

    corecore