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Abstract 

Felsenstein’s application of the bootstrap method to evolutionary trees is one of the 

most cited scientific papers of all time. The bootstrap method, which is based on 

resampling and replications, is used extensively to assess the robustness of 

phylogenetic inferences. However, increasing numbers of sequences are now 

available for a wide variety of species, and phylogenies based on hundreds or 

thousands of taxa are becoming routine. With phylogenies of this size Felsenstein’s 

bootstrap tends to yield very low supports, especially on deep branches. Here we 

propose a new version of the phylogenetic bootstrap in which the presence of inferred 

branches in replications is measured using a gradual ‘transfer’ distance rather than the 

binary presence or absence index used in Felsenstein’s original version. The resulting 

supports are higher and do not induce falsely supported branches. The application of 

our method to large mammal, HIV and simulated datasets reveals their phylogenetic 

signals, whereas Felsenstein’s bootstrap fails to do so. 

 

The bootstrap method is a widely used statistical approach to study the robustness, bias and 

variability of numerical estimates1,2. It involves resampling with replacement from the 

original dataset to obtain replications of the original estimate and then, typically, 

computing the variance and distribution of this estimate. In 1985, Joseph Felsenstein 

proposed the use of the bootstrap to assess the robustness, or repeatability, of phylogenetic 

trees3. Given a sequence alignment and a reference tree inferred from it, the procedure is: 

(i) resample, with replacement, the sites of the alignment to obtain pseudo-alignments of 

the same length, (ii) infer pseudo-trees using the same inference method and (iii) 

measure the support of every branch in the reference tree as the proportion of pseudo-

trees containing that branch. The usefulness, simplicity and interpretability of this 

method has made it extremely popular in evolutionary studies, to the point that it is 

generally required for publication of tree estimates in a wide variety of domains (molecular 

biology, genomics, systematics, ecology, epidemiology and so on). As a result, Felsenstein’s 

article has been cited more than 35,000 times and is ranked in the top 100 of the most cited 

scientific papers of all time4. However, the use of Felsenstein’s bootstrap has been 

questioned on biological grounds, notably regarding assumptions of site independence and 

homogeneity5. Furthermore, the statistical meaning of Felsenstein’s bootstrap proportions 

http://dx.doi.org/10.1038/s41586-018-0043-0
mailto:olivier.gascuel@pasteur.fr


2 
 

(FBPs) has been the subject of intense debate6, the main questions being whether FBPs can 

be seen as the confidence levels of some test and whether or not they are biased7–10. Several 

methods9,11,12 have been proposed to correct FBP to better agree with standard ideas of 

confidence levels and hypothesis testing. These works have greatly contributed to the 

understanding of what Felsenstein’s bootstrap is and what it is not. However, FBP 

correction methods are limited to relatively small datasets for mathematical and 

computational reasons (for example, double bootstrapping), and the original method is 

still often used; a Google Scholar search reveals about 2,000 citations of Felsenstein’s 

paper in 2017. As has previously been stated13, “consensus has been reached among 

practitioners, if not among statisticians and theoreticians” and “many systematists have 

adopted Hillis and Bull’s “70%” value as an indication of support”. The alternatives to FBPs 

are the Bayesian posterior probabilities of the tree branches14—which are difficult to obtain 

with large datasets for computational reasons—and the approximate branch supports15,16, 

which are computed quickly but provide only a local view. The bootstrap is also 

computationally heavy, but is easily parallelized and fast algorithms have been 

designed17,18. 

 

It is commonly acknowledged13 that Felsenstein’s bootstrap is not appropriate for 

large datasets that contain hundreds or thousands of taxonomic units (taxa), which are 

now common as a result of high-throughput sequencing technologies. Though such 

datasets generally contain a lot of phylogenetic information, the bootstrap proportions tend 

to be low, especially when the tree is inferred from a single gene, or only a few genes, as 

illustrated in Fig. 1a with a dataset of approximately 9,000 HIV-1 group M (HIV-1M) DNA 

polymerase (pol) sequences. The strongest signal in such a phylogeny generally 

corresponds to the deep branching of the subtypes. This signal is immediately visible here 

and is consistent with the common belief regarding subtype branching19 but some of the 

HIV-1M subtypes (A, B, D and G) are not supported, and neither is their branching (for 

example, the grouping of C and H). When using a medium-sized dataset of about 550 

randomly selected sequences the FBPs are higher, with most sub-types supported at 70% or 

more. However, their deep branching is still unresolved (Extended Data Fig. 5). 

 

The reason for such degradation is explained by the core methodology of Felsenstein’s 

bootstrap. A replicated branch must match a reference branch exactly to be accounted for 

in the FBP value. A difference of just one taxon—which is highly likely to be the case in large 

datasets— is sufficient for the replicated branch to be counted as absent, even though it is 

nearly identical to the reference branch13,20. There are many biological and computational 

reasons for the existence of ‘rogue’ taxa with unstable phylogenetic positions: convergence, 

recombination, sequence and tree errors, and so on. The standard approach20–24 is to 

remove these taxa and relaunch the analysis, but this is statistically questionable and 

computationally expensive. Furthermore, with a large number of taxa and a low number of 

sites the phylogenetic signal is weak. The inferred branches are then likely to have errors 
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and a large fraction of taxa may be unstable, even in the absence of model misspecification of 

any sort and without long branches. 

 

 

 
 

A statistical approach 

Our approach has a simple but sound statistical basis that is partly inspired by 

Sanderson’s monophyly index25 and partly by our work on gene clusters obtained from 

expression data26, both of which are tailored for rooted trees. We replace the branch 

presence proportion— that is, the expectation of a {0,1} indicator function—of Felsenstein’s 

bootstrap, by the expectation of a refined, gradual function in the [0,1] range, 

quantifying the branch presence in the bootstrap trees. In doing so, we admit that the 

inferred branch is not simply correct or incorrect (as with FBP), but that it may contain 

some errors. Our ultimate aim is to quantify these errors and the presence of the inferred 

branch in the true tree, using the plug-in principle (see below). We use the transfer 

distance27–29, in which the distance δ(b,b*) between a branch b of the reference tree T 

and a branch b* of a bootstrap tree T* is equal to the number of taxa that must be 

transferred (or removed) to make both branches identical (that is, both branches split the 

set of taxa identically). To measure the presence of b in T*, we search the branch in T* that is 

closest to b and use the ‘transfer index’’, φ(b,T*) = Minb*∈T*{δ(b,b*)}. 

 

This index has several important and useful properties. Any branch b splits the taxa into 

two subsets. If l is the number of taxa and p is the size of the smaller subset induced by b, we 

have the following properties (see Methods): φ(b,T*) = 0 if and only if b belongs to T*; 
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φ(b,T*) ≤ p − 1; φ(b,T*)/(p − 1) is very close to 1 when T* is random and l is large (> 100); and 

φ(b,T*) is computed recursively in time proportional to l, just as is FBP. On the basis of 

these properties, we define the transfer just as is FBP. On the basis of the bootstrap 

expectation (TBE) as: 

 

 
 

in which the numerator is the average transfer index among all bootstrap trees. It can easily 

be seen that TBE ranges from 0 to 1, in which 0 means that the bootstrap trees are random 

regarding b and 1 means that b appears in all bootstrap trees. Considering the same set of 

bootstrap trees, TBE(b) is necessarily larger than FBP(b) and the difference is substantial 

for deep branches, whereas TBE(b) = FBP(b) when b defines a (shallow) ‘cherry’, which is a 

clade comprising only two taxa (that is, p = 2). Importantly, we shall see that TBE supports 

very few branches showing substantial contradictions with the true tree when used with 

common thresholds (typically 70%7 or higher; Fig. 2c, d and Extended Data Figs. 2, 3, 7, 8). 

 

These properties—easy computation, higher supports than FBP and a low number of falsely 

supported branches—are all highly desirable. Furthermore, TBE has a simple and natural 

interpretation; for instance, with l = 1,000 and p = 200, TBE(b) = 95% means that, on 

average, (200 – 1) × 0.05 ≈ 10 taxa have to be transferred to recover b in bootstrap 

replicate trees. This interpretation is radically different from that of FBP, in which b is 

assessed globally as correct or erroneous. With TBE, branches that are nearly correct are 

also likely to be supported. Moreover, we can define an instability score for each taxon 

based on the number of times it is transferred in TBE computations. 

 

TBE uses the same procedure of resampling with replacement as does FBP and thus inherits 

some of the statistical properties of FBP3,6,9, as well as the usual properties of the bootstrap 

method1,2. Notably, TBE relies on the same assumptions as FBP regarding site 

independence and homogeneity, but these assumptions can be relaxed6, for instance, by 

using block bootstrapping30. Just as with FBP3, TBE(b) cannot be interpreted as the 

probability for the branch b to belong to the true phylogeny. Although deep mathematical 

approaches6,9–12,31 have previously been proposed to connect FBP to hypothesis-testing 

theory, TBE should not be interpreted as the confidence level of some statistical test (with null 

and alternative hypotheses, distribution of test statistics under the null and so on). TBE is 

better and more simply interpreted in terms of repeatability: TBE(b) estimates the extent to 

which branches identical or similar to b would be recovered when applying the same tree 

inference method to a new sample of the same size drawn from the same site distribution as 

the original sample. With large samples, the empirical distribution obtained from observed 

data comes close to the unknown underlying distribution of this data, and sampling with 

replacement in the empirical distribution is asymptotically equivalent to drawing samples 

from the underlying distribution1,2. 
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The convergence rate is unknown with models as complex as the ones used in 

phylogenetics, but our simulation results show that moderate sample sizes suffice to obtain 

good approximations (Extended Data Fig. 10). When the sample size is extremely large, as in 

phylogenomic studies using genome-scale sequence alignments32, both FBP and TBE are 

expected to be nearly equal to 1 for all branches. Again, this should not be interpreted in 

terms of absolute truth regarding the phylogenetic inferences, but it simply reflects the 

closeness of the empirical and underlying distributions and the very small variability of tree 

estimates. In fact, a high level of repeatability is necessary to trust phylogenetic inferences, 

but it may be not sufficient. Felsenstein3 states that the bootstrap “may be misleading if the 

method used to infer phylogenies is inconsistent”. This applies both to FBP and TBE, and is 

typical for inference methods subject to long-branch attraction. With a consistent, 

unbiased inference method, we expect the plug-in principle1,2,6,9 to apply; this principle 

states that the distribution of the distance between the true tree and the inferred tree can be 

well-approximated by the distribution of the distance between the inferred and bootstrap 

trees. Using both real and simulated data, here we show that this principle does apply with 

maximum-likelihood estimation, a phylogenetic inference method that is typically 

consistent33. In this setting, TBE provides information on the (transfer, quartet-based) 

distance between the inferred branch and the true tree, and rarely supports poor 
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branches. Moreover, the ability of TBE to identify rogue taxa makes it possible to study them 

further, to understand why they are phylogenetically unstable and to revise the branch 

supports. 

 

Analysis of mammal data 

We first studied the advantage of using TBE on a large phylogeny of 1,449 mammals, 

obtained from a usual barcoding marker (COI-5P). The reference and bootstrap trees were 

inferred by maximum likelihood from the protein alignment (527 sites) using both 

FastTree34 and RAxML with rapid bootstrap17 to check that similar conclusions were 

drawn with different inference methods. To study the effect of the number of taxa, we 

randomly selected small- (22 taxa) and medium-sized (181 taxa) datasets and performed 

the same analyses. The results were compared to the NCBI taxonomy 

(https://www.ncbi.nlm.nih.gov/ taxonomy, accessed April 2016), which represents 

current thinking about the evolutionary history of mammals. To cope with the low 

resolution of the NCBI taxonomy, we used a quartet-based topological distance rather 

than the transfer distance. For all inferred branches, we measured the quartet-based 

percentage of conflicts with the NCBI taxonomy, and the same approach was used to assess 

the topological accuracy of FastTree and RAxML phylogenies. As expected in this type of 

study based on a unique marker, the inferred topologies were relatively poor, and thus 

challenging for branch support methods. However, RAxML was more accurate than 

FastTree and had higher branch supports, as is generally observed with rapid 

bootstrap16 (Extended Data Figs. 2, 3). 

 

Our results (Fig. 2a–c and Extended Data Figs. 2, 3) indicate clearly that TBE provides some 

support for deep branches, whereas FBP does not. As expected, the supports for shallow 

branches are similar between the two methods, and the advantage of TBE is more 

pronounced with a large number of taxa but still of interest with medium-sized datasets. 

Comparisons with the NCBI taxonomy show that TBE supports a larger number of weakly 

contradicted branches than FBP—which fulfils one of the objectives of TBE (nearly correct 

branches must be supported)— and the number of supported branches with moderate-to-

high quartet conflicts remains very low. These results are confirmed by simulations (Fig. 2d 

and Extended Data Figs. 7, 8). The advantage of TBE appears clearly when inspecting the 

tree clades. For example (Fig. 3), the simian clade inferred by FastTree has a strong support 

with TBE; by contrast, when using FBP, support for this clade is nearly null owing to a large 

number of rogue taxa in the bootstrap trees, and the same holds true for several sub-

clades. The simian clade includes all 152 simian sequences plus two non-simian taxa 

(Maxomys rajah and Canis adustus). 
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The latter is not a rogue taxon: its sequence is incomplete and very close to the simian 

sequences for the part that is available, and its position is very stable in the bootstrap trees. 

By contrast, Maxomys rajah is a rogue taxon and is detected as such by TBE (transferred in 

659 out of 1,000 bootstrap trees when computing the support of the simian clade). Similar 

results were found with other well-established clades when using RAxML (Fig. 4). Both FBP 

and TBE support some small clades, namely the Monotremata and Elephantidae. However, 

FBP does not support any deep branches, except for the Cetacea (67%) and, to some extent, 

the simians (50%). TBE provides strong supports for these two groups, but also for five other 

groups, including the Marsupiala and Insectivora. The latter clade (FBP: 0%, TBE: 78%) 

contains all Insectivora of the NCBI taxonomy, plus one extra taxon (Plecotus strelkovi), which 

again is detected by TBE as a rogue taxon (transferred in 965 out of 1,000 bootstrap trees). By 

comparison, the removal of rogue taxa24 does not substantially improve FBP: eight and three 

taxa are removed with FastTree and RAxML, respectively, but the number of branches with 

FBP > 70% remains the same. This is explained by hundreds of taxa, which are relatively 

unstable but not removed. 

 

Analysis of HIV data 

We applied our method to a large dataset of 9,147 HIV-1M pol sequences. Datasets of 

this size are increasingly common in molecular epidemiology and phylodynamics35. We 

retained only sequences that were annotated as non-recombinant by the Los Alamos HIV-1 

database using a fast-filtering approach. Among these sequences, 48 recombinant 

sequences were detected by jpHMM36. These 48 sequences were kept in the analyses to 

study the effect of recombinant sequences, as their presence is inevitable in any HIV 

dataset. In contrast to that of mammals, the tree topology of HIV-1M strains is essentially 
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unknown. Moreover, it is intrinsically unstable because reconstructing a tree with so many 

relatively short and possibly recombinant sequences is challenging. Thus, the main 

expectation is to observe a clear separation between the subtypes. We built the reference 

and bootstrap trees using FastTree on the DNA sequence alignment (1,043 sites), and 

performed the same analyses using smaller subsets of 35 and 571 sequences. Although 

the deep branching of the subtypes19 is poorly supported by FBP (Fig. 1a), it becomes 

apparent with TBE, as when using this approach all subtypes have a support larger than 

80% and close to 100% in most cases (Fig. 1b and Extended Data Fig. 5). For example, the 

subtype B clade (3,559 taxa) has a support of only 3% using FBP, but a support of 99% using 

TBE. This clade contains all subtype B sequences, plus two taxa detected as recombinant by 

jpHMM; this means that both supports are likely to be correct insofar as they state that 

this clade is incorrect (FBP) or nearly correct (TBE). However, FBP fails to detect any 

phylogenetic signal, whereas TBE reveals that this signal is very strong. The same holds true 

with other well-described clades. For example, TBE supports the identification of regional 

variants of HIV-1 subtypes that are of epidemiological importance (such as the East 

African, Indian and South American subtype C variants), which FBP fails to support. TBE 

provides a substantial support to a much larger number of deep branches. Again, the 

advantage of using TBE is higher with large datasets (Extended Data Fig. 4), but is still 

apparent when using 571-taxon datasets, for which the deep subtype branching and C sub-

epidemics are supported by TBE but not FBP (Extended Data Fig. 5). An important 

feature of TBE is that the supports may be non-local, but attached to ‘caterpillar-like’ 

paths, in which the main phylogenetic backbone is connected to a few isolated taxa (Fig. 1b; 

for example, subtype C). With HIV-1M data, this corresponds to the fact that the subtype 

roots are usually not well defined owing to recombinant and ancient sequences, which tend 

to be isolated in basal position. Moreover, the instability score among recombinant 

sequences is clearly higher than in the sequences that were not detected as recombinant 

(Extended Data Fig. 6), which supports the biological soundness of the approach and its 

power to detect recombinant and rogue taxa. 

 

Analysis of simulated data 

To check that TBE does not support erroneous branches, we performed extensive computer 

simulations with various tree sizes and phylogenetic signal levels. We also added unstable 

taxa that had a weaker phylogenetic signal than the others. The results are highly similar 

to those obtained using real data, regarding the support of deep branches and the tree size 

(Extended Data Figs. 7, 8). In all the conditions we examined, TBE supported very few 

branches that showed substantial contradictions with the true tree, and the rogue taxa 

exhibited lower stability (Extended Data Fig. 9). In the absence of rogue taxa (Extended 

Data Fig. 7), the gain of TBE was still substantial compared to FBP, with almost twice as 

many branches with support > 70%, thus demonstrating the importance of accounting for 

the global instability of the inferred tree. Furthermore, we checked the interpretation of 

TBE as a measure of repeatability (Extended Data Fig. 10) by comparing TBE to its 

counterpart computed from simulated alignments, rather than bootstrap pseudo-

alignments; both simulation- and bootstrap-based supports are highly correlated 

(Pearson’s ρ = 0.85) with alignments of moderate length (about 500) and have 
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analogous performance in detecting rogue taxa. Lastly, we checked the validity of the 

plug-in principle by comparing TBE to the similarity—measured using the normalized 

transfer index—between the inferred branch and the true tree (Extended Data Fig. 10). 

Again a high correlation (Pearson’s ρ = 0.74) was found. When performing the same 

experiments with FBP similar or slightly lower correlations were observed, probably owing 

to the discontinuous nature of FBP. 

 

Discussion 

The transfer bootstrap thus provides a measure of branch repeatability, or robustness. Our 

results clearly demonstrate its usefulness, especially with deep branches and large datasets, 

for which branches known to be essentially correct are supported by TBE but not by FBP. 

Furthermore, when combined with consistent maximum-likelihood tree estimation, TBE 

rarely supports poor branches. Importantly, TBE supports are easily interpreted as 

fractions of unstable taxa. Although our results suggest that 70% is a reasonable 

threshold from which to start (Extended Data Figs. 2, 3, 4, 8), we suggest that it is better 

to interpret TBE values depending on the data and the phylogenetic question being 

addressed; for example, using a lower TBE support threshold with HIV and possibly 

recombinant sequences, than with mammals. Moreover, our experiments demonstrate the 

ability of the transfer index to detect unstable taxa responsible for low supports. Lastly, the 

approach is applicable to rapid bootstrap17,18 (Fig. 4 and Extended Data Fig. 3) and could be 

extended to parametric bootstrap2 and Bayesian branch supports14. 

 

Online content 

Any Methods, including any statements of data availability and Nature Research reporting 

summaries, along with any additional references and Source Data files, are available in the 

online version of the paper at https://doi.org/10.1038/s41586- 018-0043-0. 
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Methods 

Definitions and properties of transfer distance and index.  

The transfer distance27, also called R-distance28, was introduced to compare partitions in 

cluster analysis. In this context, the transfer distance is equal to the minimum number of 

elements to be transferred (or removed) to transform one partition into the other. Tree 

branches are commonly seen as bipartitions or splits, as a branch divides the taxa into two 

subsets situated on its two sides. The most used topological distance between two trees is the 

Robinson–Foulds distance37, which is equal to the number of bipartitions that belong to one 

tree but not the other. The bipartition distance is overly sensitive to some small tree changes, 

possibly involving a unique taxon29. Previous authors29 have proposed using the transfer 

distance and designed algorithms to compute a more robust ‘matching’ distance between trees; 

although a different task, this is related to the aim of this article. In the following, we first provide 

basic definitions—following the standard text book for phylogenetic trees38—and then 

demonstrate the properties of the transfer distance in a bootstrap context. 

 

Let X be a fixed set of l taxa. An X-tree is a phylogenetic tree with l leaves labelled by the taxa of 

X. All reference and bootstrap trees discussed here are X-trees, meaning that they are 

labelled by the same set of l taxa. Any branch of an X-tree defines a bipartition of X, and the 

topology of an X-tree can be recovered from its bipartition set. Thus, we will use the terms 

branch and bipartition to mean the same thing in different contexts. Any bipartition, b, of X can 

be encoded by a {0,1} vector v(b) of length l, in which the taxa on the same side of the 

bipartition are encoded by the same value. Note that b is also encoded by v̄ (b), the negation of 

v(b) (that is, the zeros are turned into ones, and vice versa). Moreover, the smaller of the two 

subsets induced by a bipartition b will be called here the ‘light side’ of b, and p will denote the 

size of the light side of b (p ≤ l − p). A bipartition is ‘trivial’ when it has a unique taxon in its 

light side (p = 1). An X-tree defines l trivial bipartitions corresponding to each of the taxa. These 
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trivial bipartitions are contained in every X-tree, while the other non-trivial bipartitions define 

the core of the tree topology and are the central subject of phylogenetic studies. 

The transfer distance δ(b,b*) between a bipartition b of the reference tree T and a bipartition 

b* of a bootstrap tree T* is equal to the number of taxa that must be transferred (or removed) 

to make both bipartitions identical. The transfer distance is easily defined and computed using 

the Hamming distance, H, between v(b) and v(b*): 

 

 
 

To measure the presence of b in T*, we search the bipartition in T* that is closest to b and use 

the transfer index φ(b,T*) = Minb*∈T*{δ(b,b*)}. Based on above definitions, δ(b,b*) = 0 if and 

only if v(b) and v(b*) define the same bipartition of X. Thus, the transfer index satisfies φ(b,T*) 

= 0 if and only if b∈T*. Moreover, let b be any given bipartition of T and t be a taxon on the 

light side of b. The trivial bipartition b* = {t}|X – {t} is found in any bootstrap tree T* and 

δ(b,b*) = p – 1. There may well be another bipartition closer to b in T*, but at least this 

ensures that φ(b,T*) ≤ p – 1, and thus the transfer support, TS, satisfies: 

 

 
 

and TS(b,T*) = 1 if and only if b∈T*. Let 1b(T*) be the indicator function equal to 1 when b∈T* 

and 0 otherwise. For any bipartition b and tree T*, we have 1b(T*) ≤ TS(b,T*). The FBP is equal 

to the average of 1b(T*) over the set of bootstrap trees, while the TBE is equal to the average of 

TS(b,T*). Thus, when using the same set of bootstrap trees, we necessarily have FBP(b) ≤ 

TBE(b). When b is a cherry (p = 2), we have 1b(T*) = TS(b,T*) and thus FBP(b) = TBE(b). With 

deeper bipartitions, we generally observe that in the presence of a clear phylogenetic signal, only 

a small number of taxa need to be transferred to make b identical to a bipartition in T*, while 

the strict presence of b in T* can be relatively rare; the difference between FBP(b) and TBE(b) 

can then be substantial. The transfer distance and index are related to parsimony. The branch b 

is equivalent to a binary {0,1} character; assuming that the tips of T* are labelled accordingly, 

we can define PA(b,T*), which is the minimum number of changes along T* branches required 

to explain the labels of the tips. When b belongs to T*, we have PA(b,T*) = 1, and the more 

shuffled the zeros and ones among the tips of T*, the higher is PA(b,T*). It is easy to see that 

PA(b,T*) ≤ φ(b,T*) + 1. Indeed, let b* be a branch in T* such that φ(b,T*) = δ(b,b*) and assume, 

without loss of generality, that δ(b,b*) is equal to the number of tips labelled 1 in the light side of 

b* plus the number of tips labelled 0 in the heavy side of b* (in other words, the light side of b* 

is mostly 0 and the heavy side is mostly 1). Now consider that all internal nodes in the light side 

are 0 and all internal nodes in the heavy side are 1; this implies a number of changes equal to 

φ(b,T*) + 1, which by the definition of parsimony is larger than or equal to PA(b,T*). 

Parsimony is thus another option to measure branch presence, but it is inappropriate in our 

context. For example, consider a reference branch b = AB|CD, in which A, B, C and D are four 

large ‘corner’ subtrees, and a tree T* with an internal branch b* grouping the corner subtrees 

the other way around (for example, b* = AC|BD, meaning that A and C sit on one side of b*, 
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and B and D on the other side). Then, PA(b,T*) is equal to 2, a very low value, whereas T* is 

phylogenetically very different from b because both clades defined by b are mixed. In this case, 

the transfer index between b and T* is much larger and equal to the minimum size of A, B, C 

and D. 

 

Recursive computation of the transfer index. A recursive algorithm to compute all 

transfer distances between any given bipartition b of T and all bipartitions of another tree T′ 

has previously been described26,29. This algorithm is easily transformed to compute the 

transfer index. The principle is as follows: 

1. Map all the leaves of the light side of b to 0, the others to 1 and apply the same mapping to the 

leaves of T*. Furthermore, root T* at any internal node. 

2. With a single post-order tree traversal, one can compute the number of leaves labelled 0 

and the number of leaves labelled 1 for every subtree in T*. 

3. Let l0 be the number of leaves labelled 0 and l1 be the number of leaves labelled 1 in the 

subtree attached below a given bipartition b*. The transfer distance between b and b* is given by 

δ(b,b*) = Min{p − l0 + l1,l − p − l1 + l0} (think to the missing zeros and the ones to be removed in 

b* below subtree, and vice versa). This distance can be computed during the post-order 

traversal as well as the transfer index φ(b,T*), which is the minimum of δ(b,b*) for all 

bipartitions of T*. This algorithm has linear time complexity, and thus computing TBE for all 

bipartitions in T with r bootstrap replicates has a time complexity in O(rl2). FBP has the same 

time complexity, but very efficient implementations have been developed (for example, using bit 

vectors to encode bipartitions). In practice, computing all TBE supports with 4,000 taxa and 

1,000 replicates requires less than one hour (5 core Intel Xeon 3.5 GHz), which is negligible 

compared to the time required to infer the reference and bootstrap trees. 

4.  

Expected transfer index with random trees and TBE distribution. We have seen that 

the transfer index satisfies φ(b,T*) ≤ p −1. We show here that the expected transfer index is 

very close to this upper bound with random ‘bootstrap’ trees when the number of taxa is large 

enough. Consequently, the transfer bootstrap expectation of any branch b (TBE(b) = 1−φ (b, T 

∗)/(p−1)) is close to 0 when the bootstrap trees seem to be random and do not contain any 

signal regarding b. This property explains why moderate supports—for example, 70% as used 

throughout this paper—are sufficient to reject poor branches, as a branch support of 70% 

cannot be observed by chance. We first provide a simple argument to explain this result, based 

on the expected transfer distance between a fixed bipartition b and a random bipartition b* 

with fixed light-side size p*. Let x = p/l denote the proportion of taxa in the light side of b (x 

≤ 1 − x because p≤ l − p). Both bipartitions b (fixed) and b* (random) define four taxon 

subsets, the sizes of which follow hypergeometric distributions with expectations: E(light side 

of b ∩ light side of b*) = xp*; E(light side of b ∩ heavy side of b*) = x(l − p*); E(heavy side of b ∩ 

light side of b*) = (1 − x)p*; and E(heavy side of b ∩ heavy side of b*) = (1 − x)(l − p*). It is easily 

seen that under these assumptions, the expected transfer distance between b and b* is equal to 

the sum of the second and third (anti-diagonal) terms: that is, E[δ(b,b*)] = (1 − 2x)p* + p. As 

p* > 0 and (1 − 2x) ≥ 0, we have: E[δ(b,b*)] ≥ p. This result shows that the expected transfer 

distance between b and b* is larger than or equal to p, for any value of p and p*. Moreover, with 
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a lower p*, the expected transfer distance is closer to p. As a first approximation, we thus see 

that the transfer index should be close to its upper-bound p − 1, because it is equal to the 

minimum of distances which taken separately are all expected to be larger than p. However, 

these distances fluctuate around their expected values, and their minimum may be lower than 

the minimum of their individual expectations, especially when using small samples (that is, low 

number of taxa). We performed computer simulations to measure the extent of this 

phenomenon and the validity of the E[φ(b,T*)] ≈ p − 1 approximation. We used four tree 

sizes: l = 16, 128, 1,024 and 8,192 taxa, and four models of random phylogenetic trees: 

caterpillars (fully imbalanced), PDA, Yule–Harding and perfectly balanced38. For the 

bipartition b, all possible integer values of p in the [2, l/2] range were used. The number of 

random bootstrap trees was equal to 1,000, and we performed 100 runs per tree size. Results 

are displayed in Extended Data Fig. 1. With l ≥ 1,024, the average transfer index with random 

trees is very close in relative value to the upper bound p − 1, and the approximation is already 

satisfying with l = 128. Moreover, the results are nearly the same for the four random tree 

models, suggesting that the property holds in a number of settings. As expected, the 

approximation is better with small p. Indeed, note that the upper bound p − 1 is obtained 

with a trivial bipartition b* made of a unique taxon belonging to the light side of b. When a 

cherry in T* contains two taxa from the light side of b, then φ(b,T*) ≤ p − 2. Similar deviations 

are observed with subtrees in T* containing a large fraction of taxa belonging to the light side of 

b. With a larger p, there is a higher probability for such an event to occur. Note, however, that 

large values of p (that is, p ≈ 2) are relatively rare for most tree models (for example, Yule–

Harding). Looking at the distribution of TBE, we see that having TBE larger than a moderate 

threshold (such as 50%) is very unlikely, even with 16 taxa, thus explaining that TBE rarely 

supports poor branches with real and simulated data (Fig. 2c, d and Extended Data Figs. 2, 3, 7, 

8).  

 

Software programs and web server. We developed several tools to compute the transfer 

bootstrap. We first implemented a command line tool in C, ‘Booster’ (open source, available at 

https://github.com/evolbioinfo/booster). This tool computes TBE as well as FBP supports, 

and the stability scores of the taxa (globally or per branch). It takes two files as input: (1) a 

reference tree file in Newick format and (2) a bootstrap tree file in Newick format, containing all 

bootstrap trees. A number of software programs can be used to infer trees from multiple 

sequence alignments (MSAs) and produce these reference and bootstrap files in the desired 

format; these include RAxML, FastTree and PhyML—used in this article—as well as many others 

(see examples in Booster GitHub repository). We also developed ‘BoosterWeb’ 

(http://booster.c3bi.pasteur.fr), a freely available web interface that enables users to compute 

bootstrap supports (TBE and FBP) easily without installing any tool on their own computer. 

Computations are launched on the Institut Pasteur cluster throughout a Galaxy instance. As 

with the command line tool, this includes the option to input reference and bootstrap trees 

inferred using any phylogenetic program. Another option is to upload an MSA and then run 

PhyML-SMS39 (for medium-size datasets) or FastTree (for large datasets) to infer the trees. 

We propose a basic visualization of the resulting tree highlighting highly supported branches 

at a given threshold. The resulting tree can be uploaded in one-click on iTOL40 for further 
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manipulation. Moreover, BoosterWeb is self-contained and can be easily installed on any 

desktop computer (Windows, MacOS and Linux) by downloading the BoosterWeb executable. 

 

For the sake of reproducibility, all analyses described in this article were implemented in the 

NextFlow workflow manager41, and are accessible along with all our data at 

https://github.com/evolbioinfo/booster-workflows. The software programs that we developed 

to manipulate data are available for download at http://github. com/fredericlemoine/goalign 

and http://github.com/fredericlemoine/gotree, for manipulating alignments and trees, 

respectively. 

 

Mammal dataset and analyses. We downloaded all aligned mammals COI-5P amino acid 

sequences from the Barcode of Life Data System (http://www. barcodinglife.org, accessed 

September 2015). We removed all sequences shown to be identical among several species, kept 

one sequence per species (several gene versions are available for some species, but no 

paralogues), and converted the resulting multiple alignment (1,449 sequences, 527 sites) into 

FASTA format. This alignment was subsampled to study the effect of tree size. We randomly 

drew 8 samples with 1/8th of the sequences (that is, 181) and 64 samples with 1/64th of the 

sequences (that is, 22). We then generated 1,000 bootstrap alignments for the full alignment 

and each of the 72 subsampled alignments by drawing sites with replacement. We used 

FastTree34 (options: -nopr -nosupport -wag -gamma) to infer trees from each of these 

reference (1 + 8 + 64 = 73) and bootstrap (73,000) alignments. To ensure that the results and 

conclusions were independent of the tree inference method, we also performed the same 

analyses using RAxML with rapid boot- strap17 (options: -f a -m PROTGAMMA -c 6 -T 10 -p 

$RANDOM -x $RANDOM -#1000). The FBP and TBE supports for the (73 × 2) reference trees 

were computed using Booster (command-line version written in C). All trees were drawn 

using iTOL and are available in the Booster GitHub repository, along with the sequence 

alignments. To assess whether rogue taxa removal improves FBP supports, we ran RAxML 

rogue-detection tool24 (options: -J MR_DROP -z bootstrap_trees -m PROTGAMMAWAG -

c 6 -T 4) and recomputed FBP supports without the detected taxa. 

 

The FastTree and RAxML complete tree topologies were compared to the NCBI taxonomy 

(https://www.ncbi.nlm.nih.gov/taxonomy), which was converted to Newick format and 

reduced to the 1,444 taxa common to both our alignment and the NCBI taxonomy. This NCBI 

tree is not fully resolved and summarizes common belief about the evolutionary history of 

mammals, resulting from a number of phylogenetic studies based on numerous markers. The 

unresolved part of the NCBI tree (~4.35 descendants per node on average, instead of 2 for a fully 

resolved tree) corresponds to the unknown or uncertain part of that history. To cope with 

uncertainty, we used quartets to compare the (fully resolved) inferred trees to the NCBI tree. 

A quartet is a tree topology with four taxa; AB|CD is the standard notation for quartets, 

indicating that taxa A and B form a cherry separated by an internal branch from the cherry 

formed by C and D; a quartet is unresolved when the four taxa are connected to a single 

central node. A bipartition b induces a quartet AB|CD when A and B belong to the same side of 

b, and C and D to the other side. We used tqDist42 to count the number of quartets induced by 
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the reference branches, which appeared to contradict the quartets induced by the NCBI tree 

and its bipartitions; for example, AB|CD was found in the studied branch, whereas AC|BD was 

found in the NCBI tree. Unresolved quartets of the NCBI tree were not counted as 

contradictory, as they represent an unknown evolutionary truth and the inferred resolution 

could be correct. Such an approach would be difficult to implement with the transfer distance. 

The number of contradicted quartets was divided by the total number of quartets induced by 

the studied branch, to obtain a normalized measurement in the [0,1] range (0: no 

contradiction; 1: all induced quartets are contradicted). We used the same approach to check 

the accuracy of the FastTree and RAxML tree topologies, comparing the whole set of quartets 

induced by the inferred tree to those induced by the NCBI tree. 

 

HIV dataset and analyses. From the HIV database (https://www.hiv.lanl.gov/ 

content/index) we retrieved pol sequences of the nine ‘pure’ subtypes of HIV-1 group M, 

corresponding to positions 2258–3300 relative to the HXB2 reference strain (accessed 

September 2014). The ‘one sequence per patient’ option was used and we randomly selected 

samples of the over-sampled subtypes (A1, B, C, D and G), resulting in a final dataset of 9,147 

sequences. These sequences are annotated as ‘pure’ (that is, non-recombinant) in the database, 

using a fast filtering approach. However, 48 recombinant sequences were still detected using 

the standalone version of jpHMM36 (version March 2015; options: -v HIV, with default input 

and priors). These 48 sequences were kept in the analyses to study the effect of recombinant 

sequences, as their presence is inevitable in any HIV dataset. jpHMM was also used to 

annotate the whole set of sequences depending on their subtype or recombinant status. 

 

Sequences were aligned using MAFFT43 (version 7.0; default parameters) along with the HXB2 

reference strain. Codon positions associated with major drug resistance mutations were 

removed before tree inference, resulting in an alignment of 1,043 DNA sites (R source code 

available at https://github.com/olli0601/big. phylo). This alignment was subsampled to study 

the effect of tree size. We randomly drew 16 samples with 1/16th of the sequences (that is, 571), 

and 256 samples with 1/256th of the sequences (that is, 35). Then, we generated 1,000 

bootstrap alignments for the full alignment and each of the 272 subsampled alignments, by 

drawing sites with replacement. We used FastTree34 (options: -nopr -nosupport -gtr -nt -

gamma) to infer trees from each of these reference (1 + 16 + 256 = 273) and bootstrap 

(273,000) alignments. The FBP and TBE supports for the 273 reference trees were 

computed using Booster (command-line version written in C). All trees were drawn using 

iTOL (http://itol.embl.de/) and are available on the Booster-workflows GitHub repository, 

along with the sequence alignments. The instability score was computed considering the 

reference branches with TBE > 70% (the signal becomes noisy when incorporating branches 

with lower supports in the calculation, as these branches may be erroneous and thus non-

informative about taxon stability). For every taxon, the instability score is equal to the 

average number of times it has to be transferred to recover these branches from the 

bootstrap trees, divided by the number of these branches. 
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The most representative clades for each of the subtypes in the reference trees (Fig. 1 and 

Extended Data Fig. 5) were obtained by minimizing the transfer distance. For example, in Fig. 

1 with the full dataset, we obtained a clade very close to subtype B, with 3,559 taxa, 2 wrong 

taxa (that is, non-B), and all (3,557 taxa) B taxa included, resulting in the values 3,559, 2 wrong 

(w) and 0 missing (m) shown in this figure. 

 

A similar approach was used for the regional variants of subtype C, which is responsible for 

approximately 50% of the HIV-1 infections in the world. Three monophyletic variants of 

subtype C have been identified by phylogenetic analysis in East Africa44, South America45 and 

India46. Furthermore, the South American epidemic was shown to originate in the East 

African cluster44. To identify these variants in the inferred trees (Fig. 1 and Extended Data Fig. 

5) we again used the transfer distance. Following previous publications44–46, we extracted 

three groups of C sequences from the whole dataset, based on their geographic origins: East 

Africa (EA: 440 sequences, originating from Burundi (288), Djibouti (1), Ethiopia (9), Kenya 

(41), Somalia (1), Sudan (11), Tanzania (78) and Uganda (11)), India (IND: 154 sequences, 

originating from India (133), Nepal (13) and Myanmar (8)) and South America (SA: 14 

sequences, originating from Brazil (12), Uruguay (1) and Argentina (1)). We then searched for 

the tree clades that were closer to these three sets of sequences. The South American sequences 

were not accounted for in transfer distance computations when searching for the East African 

clade, as they originate from East Africa. Moreover, we checked that no neighbouring, nearly 

optimal clade was supported by FBP. In all three cases, we found clades closely related to the 

sequence sets. As expected, the South American clade was included in the East African clade. 

The features of these clades are displayed in Fig. 1 and Extended Data Fig. 5. The fractions 

correspond to the number of studied sequences included in these clades, versus the total 

number of such sequences in the whole dataset (for example, 360 East African sequences in the 

East African clade in Fig. 1, among 440 in the whole tree). The ‘wrong’ sequences were expected 

in most cases. For example, the Indian clade (167 sequences, 143 from IND among 154 in the 

whole tree) contains 19 sequences from China corresponding to the spread of the virus in Asia 

via heroin trafficking routes46. 

 

Simulated data and analyses. The aim of our simulation experiments was to check that the 

results observed with the mammal and HIV-1 datasets are reproducible and quantifiable 

when the simulation conditions and correct tree are known, notably regarding the support 

of poor branches and the ability to detect rogue taxa. Simulated data mimicked the 

mammal dataset. We used the tree inferred by PhyML47 (options: -b 0 -m WAG -a e -t e -o tlr 

-d aa) from the full COI-5P protein alignment with 1,449 taxa. Protein sequences were 

evolved along this tree using INDELible48, which was launched with options and parameter 

values derived from the PhyML analysis, and similar to previously conducted experiments24 

to assess the accuracy of rogue-taxon detection. The length of the root sequence was 250 

AAs; the substitution model was WAG; amino acid frequencies were estimated from the 

COI-5P alignment; the rates across-sites model used 4 gamma categories with ‘alpha’ = 0.441 
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and no invariant sites; and the indel model used ‘power law’, ‘parameter’ = 1.5, ‘indel max 

size’ = 5, and ‘indel rate’ = 0.02. 

 

In this manner, we obtained a first ‘non-noisy’ MSA of length ~500 with ~50% gaps. Noise was 

added to this MSA to mimic rogue taxa and homoplasy. We shuffled the amino acids vertically 

for 50% of the sites (MSA columns), thus making these sites homoplasic. For 5% of the 

sequences (MSA rows), 25% additional sites were shuffled vertically, thus making these 

sequences unstable and ‘rogue’, as they contained half of the phylogenetic signal compared to 

the other (95%) sequences. Both noisy and non-noisy MSAs were used to compare FBP and 

TBE. To measure the effect of tree size, both MSAs (comprising 1,449 sequences) were sampled 

to obtain 8 MSAs with 181 sequences (~1/8 of the full sequence set) and 64 MSAs with 22 

sequences (~1/64 of the full sequence set). For each of these reference MSAs we sampled with 

replacement 1,000 pseudo-alignments to compare the two bootstrap methods. All trees were 

inferred using FastTree (options: -nopr –nosupport -wag -gamma). Just as with the mammal 

dataset, for each of the branches in the reference trees we computed the percentage of 

quartet-based conflicts with the correct (PhyML) tree used to generate the data. We also 

computed the instability score of all taxa in the complete noisy MSA, using only the 

branches with TBE > 70%. 

 

To check the repeatability of FBP and TBE, we generated 1,000 noisy MSAs using the same 

phylogenetic tree, simulation procedure and set of rogue taxa as the reference noisy MSA 

(1,449 sequences, ~500 sites and ~50% gaps). We then compared the branch supports of the 

inferred branches computed using the pseudo-alignments to those obtained using the 

simulated MSAs. The bootstrap theory2 indicates that both types of supports are close when 

the sample size is large enough. The goal was thus to check that 500 sites are enough to 

obtain a good approximation, and that the bootstrap-based and simulation-based supports 

are clearly correlated (Pearson’s and Spearman’s coefficients), as well as the instability 

score (again computed using branches with TBE > 70%). This experiment was performed 

with FBP and TBE, with both FastTree (options: -nopr –nosupport -wag -gamma) and 

RAxML (options: -f d -m PROTGAMMAWAG -c 6). Lastly, the same experiment was used to 

check the validity of the plug-in principle: we compared the FBP and TBE supports of every 

inferred branch (both FastTree and RAxML) to the presence or absence (1/0) of that branch in 

the true tree (FBP), and the normalized transfer distance between that branch and the true tree 

(TBE).  

 

Reporting summary. Further information on experimental design is available in the Nature 

Research Reporting Summary linked to this paper. 

 

Code availability. Our web interface and software programs are available from Booster 

website (http://booster.c3bi.pasteur.fr) and GitHub (https://github.com/ 

evolbioinfo/booster). The transfer bootstrap is available in several phylogenetic programs, 

including PhyML, SeaView, RAxML-NG and others (see http://booster. c3bi.pasteur.fr). 
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Data availability. All our multiple alignments, phylogenetic trees and workflows are available 

as Source Data. This material is also available from Booster website 

(http://booster.c3bi.pasteur.fr). All other data are available from the corresponding author 

upon reasonable request. 
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