291 research outputs found

    Influence of Zn excess on compositional, structural and vibrational properties of Cu2ZnSn0.5Ge0.5Se4 thin films and their effect on solar cell efficiency

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo periodThe effect of Zn content on compositional, structural and vibrational properties of Cu2ZnSn1-xGexSe4 (CZTGSe, x ~ 0.5) thin films is studied. Kesterite layer is deposited by co-evaporation onto 5 × 5 cm2 Mo/SLG substrate followed by a thermal treatment at maximum temperature of 480 °C, obtaining areas with different composition and morphology which are due to the sample position in the co-evaporation system and to the non-uniform temperature distribution across the substrate. Kesterite layers with higher Zn amounts are characterized by lower Cu and Ge contents; however, a uniform Ge distribution through the absorber layer is detected in all cases. The excess Zn concentration leads to the formation of ZnSe secondary phase on the surface and in the bulk of the absorber as determined by Raman spectroscopy. When higher Ge content and no ZnSe are present in the absorber layer, a compact structure is formed with larger grain size of kesterite. This effect could explain the higher Voc of the solar cell. The Zn content does not affect the bandgap energy significantly (Eg near 1.3 eV), although the observed effect of Zn excess in CZTGSe results in a decreased device performance from 6.4 to 4.2%. This investigation reveals the importance of the control of the off-stoichiometric CZTGSe composition during the deposition process to enhance solar cells propertiesThis work was supported by Spanish Ministry of Science, Innovation and Universities Project WINCOST (ENE2016-80788-C5-2-R) and European Project INFINITE CELL (H2020-MSCA-RISE-2017-777968). ARP also acknowledges financial support from Community of Madrid within Youth Employment Program (PEJD-2017-PRE/IND-4062). MG acknowledges the financial support from ACCIÓ-Generalitat de Catalunya within the TECNIOspring Plus fellowship (TECSPR18-1-0048

    Impact of doping on the performance of p-type Be-doped Al0.29 Ga0.71As Schottky diodes

    Get PDF
    The effects of changing the acceptors concentration on the electrical characteristics of Au/Ti on Be-doped Al0.29Ga0.71As Schottky contact have been investigated in the temperature range of 100–400 K. Using three devices with three different doping levels, the barrier height (ΦB), ideality factor (n) and series resistance (RS) for each diode were evaluated using both thermionic emission (TE) theory and Cheung's method. Our experimental results showed that the sample with a moderate doping concentration of 3×1016 cm-3 has the best performance, including ideality factor of 1.25 and rectification ratio of 2.24×103 at room temperature. All samples showed an abnormal behavior of reducing ΦB and increasing n with increase of temperature. This behavior was attributed, in case of low concertation samples, to barrier inhomogeneity and was explained by assuming a Gaussian distribution of barrier heights at the interface. While for the heavily doped sample, such non-ideal manner was ascribed with tunneling through the field emission (FE) mechanism

    Intrinsic type 1 interferon (IFN1) profile of uncultured human bone marrow CD45lowCD271+ multipotential stromal cells (BM-MSCs): the impact of donor age, culture expansion and IFNα and IFNβ stimulation

    Get PDF
    Skeletal aging is associated with reduced proliferative potential of bone marrow (BM) multipotential stromal cells (MSCs). Recent data suggest the involvement of type 1 interferon (IFN1) signalling in hematopoietic stem cell (HSC) senescence. Considering that BM-HSCs and BM-MSCs share the same BM niche, we investigated IFN1 expression profile in human BM-MSCs in relation to donor age, culture-expansion and IFN1 (α and β) stimulation. Fluorescence-activated cell sorting was used to purify uncultured BM-MSCs from younger (19–41, n = 6) and older (59–89, n = 6) donors based on the CD45lowCD271+ phenotype, and hematopoietic-lineage cells (BM-HLCs, CD45+CD271−) were used as controls. Gene expression was analysed using integrated circuits arrays in sorted fractions as well as cultured/stimulated BM-MSCs and Y201/Y202 immortalised cell lines. IFN1 stimulation led to BM-MSC growth arrest and upregulation of many IFN1-stimulated genes (ISGs), with IFNβ demonstrating stronger effects. Uncultured MSCs were characterised by a moderate-level ISG expression similar to Y201 cells. Age-related changes in ISG expression were negligible in BM-MSCs compared to BM-HLCs, and intracellular reactive oxygen species (ROS) levels in BM-MSCs did not significantly correlate with donor age. Antiaging genes Klotho and SIRT6 correlated with more ISGs in BM-MSCs than in BM-HLCs. In patients with osteoarthritis (OA), BM-MSCs expressed considerably lower levels of several ISGs, indicating that their IFN1 signature is affected in a pathological condition. In summary, BM-MSCs possess homeostatic IFN1 gene expression signature in health, which is sensitive to in vitro culture and external IFN1 stimulation. IFN signalling may facilitate in vivo BM-MSC responses to DNA damage and combating senescence and aberrant immune activation

    'Candidatus Phytoplasma phoenicium’ associated with almond witches’-broom disease: from draft genome to genetic diversity among strain populations

    Get PDF
    BACKGROUND: Almond witches'-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with 'Candidatus Phytoplasma phoenicium'. In the present study, we generated a draft genome sequence of 'Ca. P. phoenicium' strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences. RESULTS: Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of 'Ca. P. phoenicium' draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other 'Ca. Phytoplasma' species. CONCLUSION: The genetic diversity within 'Ca. P. phoenicium' strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in 'Ca. P. phoenicium' draft genome and within genomes of other 'Ca. Phytoplasma' species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response

    Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition

    Get PDF
    The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes

    Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties

    Get PDF
    Background: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. Aim of the study: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. Results: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. Conclusion: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum

    Age-related Changes in Bone Marrow Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development

    No full text
    Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA

    Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties

    Get PDF
    Background: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. Aim of the study: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. Results: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. Conclusion: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum

    Molecular architecture of potassium chloride co-transporter KCC2

    Get PDF
    KCC2 is a neuron specific K+-Cl− co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into “head” and “core” domains connected by a flexible “linker”. Dimers are asymmetrical and display a bent “S-shape” architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2

    Infliximab versus ciclosporin for steroid-resistant acute severe ulcerative colitis (CONSTRUCT):a mixed methods, open-label, pragmatic randomised trial

    Get PDF
    Infliximab and ciclosporin are of similar efficacy in treating acute severe ulcerative colitis, but there has been no comparative evaluation of their relative clinical effectiveness and cost-effectiveness.In this mixed methods, open-label, pragmatic randomised trial, we recruited consenting patients aged 18 years or older at 52 district general and teaching hospitals in England, Scotland, and Wales who had been admitted, unscheduled, with severe ulcerative colitis and failed to respond to intravenous hydrocortisone within about 5 days. Patients were randomly allocated (1:1) to receive either infliximab (5 mg/kg intravenous infusion given over 2 h at baseline, and again at 2 weeks and 6 weeks after the first infusion) or ciclosporin (2 mg/kg per day by continuous infusion for up to 7 days, followed by twice-daily tablets delivering 5·5 mg/kg per day for 12 weeks). Randomisation used a web-based password-protected site, with a dynamic algorithm to generate allocations on request, thus protecting against investigator preference or other subversion, while ensuring that each trial group was balanced by centre, which was the only stratification used. Local investigators and participants were aware of the treatment allocated, but the chief investigator and analysts were masked. Analysis was by treatment allocated. The primary outcome was quality-adjusted survival-ie, the area under the curve (AUC) of scores from the Crohn's and Ulcerative Colitis Questionnaire (CUCQ) completed by participants at baseline, 3 months, and 6 months, then every 6 months from 1 year to 3 years. This trial is registered with the ISRCTN Registry, number ISRCTN22663589.Between June 17, 2010, and Feb 26, 2013, 270 patients were recruited. 135 patients were allocated to the infliximab group and 135 to the ciclosporin group. 121 (90%) patients in each group were included in the analysis of the primary outcome. There was no significant difference between groups in quality-adjusted survival (mean AUC 564·0 [SD 241·9] in the infliximab group vs 587·0 [226·2] in the ciclosporin group; mean adjusted difference 7·9 [95% CI -22·0 to 37·8]; p=0·603). Likewise, there were no significant differences between groups in the secondary outcomes of CUCQ scores, EQ-5D, or SF-6D scores; frequency of colectomy (55 [41%] of 135 patients in the infliximab group vs 65 [48%] of 135 patients in the ciclosporin group; p=0·223); or mean time to colectomy (811 [95% CI 707-912] days in the infliximab group vs 744 [638-850] days in the ciclosporin group; p=0·251). There were no differences in serious adverse reactions (16 reactions in 14 participants receiving infliximab vs ten in nine patients receiving ciclosporin); serious adverse events (21 in 16 patients vs 25 in 17 patients); or deaths (three in the infliximab group vs none in the ciclosporin group).There was no significant difference between ciclosporin and infliximab in clinical effectiveness.NIHR Health Technology Assessment programme
    corecore