376 research outputs found

    Sexually dimorphic tibia shape is linked to natural osteoarthritis in STR/Ort mice

    Get PDF
    Human osteoarthritis (OA) is detected only at late stages. Male STR/Ort mice develop knee OA spontaneously with known longitudinal trajectory, offering scope to identify OA predisposing factors. We exploit the lack of overt OA in female STR/Ort and in both sexes of parental, control CBA mice to explore whether early divergence in tibial bone mass or shape are linked to emergent OA

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Association of XRCC3 18067 C>T (Thr241Met) polymorphism with risk of cervical and ovarian cancers: A systematic review and meta-analysis

    Get PDF
    The 18067 C>T polymorphism of XRCC3 gene has been considered to be implicated in the development of cervical and ovarian cancers, but the results are inconsistent. Thus, we conducted a meta-analysis to assess the association of XRCC3 18067 C>T polymorphism with risk of cervical and ovarian cancers. All studies on the association of XRCC3 18067 C>T polymorphism with cervical and ovarian cancers risk were retrieved. Finally, a total of 17 studies including 10 studies with 5,637 cases and 10,057 controls on ovarian cancer and 7 studies with 1,112 cases and 1,233 controls on cervical cancer were selected. Overall, pooled results showed that the XRCC3 18067 C>T polymorphism was significantly associated with increased risk of ovarian cancer (TC vs. CC: OR = 0.904, 95 CI = 0.841�0.972, p = 0.006; TT + TC vs. CC: OR = 0.914, 95 CI = 0.853�0.979, p = 0.010) and cervical cancer (TC vs. CC: OR = 1.00, 95 CI = 1.066�1.585, p = 0.009). Further subgroup analysis by ethnicity revealed an increased risk of cervical and ovarian cancer in Asians and Caucasians, respectively. The present meta-analysis inconsistent with the previous meta-analysis suggests that the XRCC3 18067 C>T polymorphism might be implicated in the pathogenesis of cervical and ovarian cancers. © 2019 The Author(s)

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Topic Discovery on Farsi, English, French, and Arabic Tweets Related to COVID-19 Using Text Mining Techniques

    Get PDF
    Background: Social networks are a good source for monitoring public health during the outbreak of COVID-19, these networks play an important role in identifying useful information. Objectives: This study aims to draw a comparison of the public's reaction in Twitter among the countries of West Asia (a.k.a Middle East) and North Africa in order to make an understanding of their response regarding the same global threat. Methods: 766,630 tweets in four languages (Arabic, English French, and Farsi) tweeted in March 2020, were investigated. Results: The results indicate that the only common theme among all languages is 'government responsibilities (political)' which indicates the importance of this subject for all nations. Conclusion: Although nations react similarly in some aspects, they respond differently in others and therefore, policy localization is a vital step in confronting problems such as COVID-19 pandemic. © 2021 The authors, AIT Austrian Institute of Technology and IOS Press

    Sleep-disordered breathing-do we have to change gears in heart failure?

    No full text
    The majority of patients with heart failure have sleep-disordered breathing (SDB)-with central (rather than obstructive) sleep apnoea becoming the predominant form in those with more severe disease. Cyclical apnoeas and hypopnoeas are associated with sleep disturbance, hypoxaemia, haemodynamic changes, and sympathetic activation. Such patients have a worse prognosis than those without SDB. Mask-based therapies of positive airway pressure targeted at SDB can improve measures of sleep quality and partially normalise the sleep and respiratory physiology, but recent randomised trials of cardiovascular outcomes in central sleep apnoea have been neutral or suggested the possibility of harm, likely from increased sudden death. Further randomised outcome studies (with cardiovascular mortality and hospitalisation endpoints) are required to determine whether mask-based treatment for SDB is appropriate for patients with chronic systolic heart failure and obstructive sleep apnoea, for those with heart failure with preserved ejection fraction, and for those with decompensated heart failure. New therapies for sleep apnoea-such as implantable phrenic nerve stimulators-also require robust assessment. No longer can the surrogate endpoints of improvement in respiratory and sleep metrics be taken as adequate therapeutic outcome measures in patients with heart failure and sleep apnoea

    Adaptive servoventilation improves cardiac function and respiratory stability

    Get PDF
    Cheyne–Stokes respiration (CSR) in patients with chronic heart failure (CHF) is of major prognostic impact and expresses respiratory instability. Other parameters are daytime pCO2, VE/VCO2-slope during exercise, exertional oscillatory ventilation (EOV), and increased sensitivity of central CO2 receptors. Adaptive servoventilation (ASV) was introduced to specifically treat CSR in CHF. Aim of this study was to investigate ASV effects on CSR, cardiac function, and respiratory stability. A total of 105 patients with CHF (NYHA ≥ II, left ventricular ejection fraction (EF) ≤ 40%) and CSR (apnoea–hypopnoea index ≥ 15/h) met inclusion criteria. According to adherence to ASV treatment (follow-up of 6.7 ± 3.2 months) this group was divided into controls (rejection of ASV treatment or usage <50% of nights possible and/or <4 h/night; n = 59) and ASV (n = 56) adhered patients. In the ASV group, ventilator therapy was able to effectively treat CSR. In contrast to controls, NYHA class, EF, oxygen uptake, 6-min walking distance, and NT-proBNP improved significantly. Moreover, exclusively in these patients pCO2, VE/VCO2-slope during exercise, EOV, and central CO2 receptor sensitivity improved. In CHF patients with CSR, ASV might be able to improve parameters of SDB, cardiac function, and respiratory stability
    corecore