96 research outputs found

    Utilization of fly ash in concrete

    Get PDF
    Fly ash, a by-product of coal burning power plants, is produced in large quantities each year. It is commonly known that fly ash possesses pozzolanic behavior which can enhance the properties of concrete. Due to a lack of proper understanding on the formation of fly ash and its performance in concrete, the question of quality assurance has frequently been a major concern of engineers using fly ash in their construction projects. As a result, much fly ash is disposed of as waste material in landfills. Recent environmental concerns and a shortage of landfill space have rapidly escalated the disposal cost of fly ash and therefore, the need to seek better utilization of fly ash in concrete is then critical. The objective of this investigation is to study the effect of fly ash on the strength development of mortar and concrete and to develop models to predict its performance in these cementitious composites. The fly ash used was carefully selected and defined as to its origination, formation, physical and chemical compositions, and the storage condition. The original fly ash was fractionated into six particle size ranges, each having a relatively uniform particle size, with maximum sizes ranging from 5 to 300 microns. The rate of strength gain of these fly ash concretes was monitored from 1 to 180 days. The compressive strength for each series was correlated to the conditions of fly ash used to determine the major parameters affecting the performance of fly ash in mortar and concrete. The results from this study show that the particle size of fly ash has a significant effect on the strength development of concrete. The combustion condition in the boiler has some influence on the performance of fly ash in cementitious composites. Of particular importance is the finding that certain portions of fly ash when used as cement replacement can improve the strength of concrete beyond normal cement as early as 14 days. A correlation to predict the compressive strength of fly ash concrete is proposed and provides good agreement with experimental results both from this study as well as from other investigators

    COHESION IN NARRATIVE ESSAY WRITING OF EFL SECONDARY STUDENTS IN THAILAND

    Get PDF
    Cohesion has been in the limelight of many linguists in terms of investigating how texts are related to each other. This study examines what cohesive devices are used in students’ narrative essays and which cohesive device is most frequently used in each type among three groups of students. Thirty participants, all of whom were grade 11 students at a public school in Bangkok, were divided into three groups: advanced, intermediate and beginner. The main instrument for data analysis was a sample of 30 finished student’s narrative essays in which cohesion was extracted. The findings revealed that four types of cohesion: reference, substitution, conjunction and lexical cohesion were found in students’ narrative essays, while elliptical cohesion was noticeably absent. The comparison of each sub-category among three target groups showed that 141 personal references ‘I’ was the most frequently used in the advanced group, followed by 113 additive conjunctions ‘and’ in the advanced group, 95 collocations in the advanced group and 18 nominal substitutions ‘one’ in the beginner group respectively. This study could provide useful suggestions for the EFL writing classroom for not only students to improve the use of cohesion in their writings but also for teachers to prepare a practical writing pedagogy for the EFL students

    Influencia de la ceniza de bagazo de diferentes finuras en la reacciÃģn ÃĄlcali-sílice del mortero

    Get PDF
    This research aimed to study the effect of finenesses of bagasse ash (BGA) on the alkali-silica reaction of mortar. The BGA sample was ground to have particles retained on a sieve No. 325 of 33Âą1% and 5Âą1% by weight. Ground BGA samples were used separately to replace ordinary Portland cement (OPC) at rates of 10, 20, 30 and 40% by weight of binder to cast mortars. The compressive strengths and the alkali-silica reaction (ASR) of mortars were investigated. The results showed that a large particle size of BGA is not suitable for use in lowering ASR because it results in a low compressive strength and high expansion due to ASR. The mortars containing BGA with higher fineness exhibited higher compressive strength and lower expansion due to ASR than the mortars containing BGA with lower fineness. The results also suggested that the ground BGA retained on a sieve No. 325 of less than 5% by weight is suitable to be used as a good pozzolan which provides high compressive strength and reduces the expansion of mortar due to ASR even though it contains high LOI. The obtained results also encourage the utilization of ground BGA effectively which leads to reduce the disposal of bagasse ash.Esta investigaciÃģn tiene como objetivo estudiar el efecto de la finura de la ceniza de bagazo (BGA) en la reacciÃģn ÃĄlcali-sílice del mortero. La muestra de BGA fue molida para conseguir partículas retenidas en un tamiz No. 325 de 33 Âą1% y 5Âą1% en peso. Las muestras de BGA molidas fueron utilizadas separadamente para reemplazar el cemento Portland en proporciones del 10, 20, 30 y 40% en peso en el mortero. Se estudiaron tanto las resistencias a compresiÃģn como la reacciÃģn ÃĄlcali-sílice (RAS) de los morteros. Los resultados indicaron que la utilizaciÃģn de un tamaÃąo mayor de las partículas de BGA no es recomendable para disminuir la RAS ya que conlleva a una disminuciÃģn de las resistencias a compresiÃģn y a una alta expansiÃģn debido a la RAS. Los morteros que contenían BGA de una mayor finura exhibían mayor resistencia a compresiÃģn y una menor expansiÃģn, debido a la RAS, que los morteros que contenían BGA de menor finura. Al mismo tiempo los resultados sugieren que el BGA molido retenido en un tamiz No. 325 de menos de un 5% en peso es apropiado para ser usado como material puzolÃĄnico, ya que provee una gran resistencia y reduce la expansiÃģn del mortero producido por la RAS a pesar de contener una alta pÃĐrdida por calcinaciÃģn. Los resultados obtenidos tambiÃĐn recomiendan la utilizaciÃģn eficiente del BGA molido ya que conlleva una disminuciÃģn de los desechos de las cenizas de bagazo

    Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Get PDF
    This research studies the effects of W/B ratios and palm oil fuel ash (POFA) on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B) ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete

    Properties of concrete made from industrial wastes containing calcium carbide residue palm oil fuel ash rice husk-bark ash and recycled aggregates

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ„āļ­āļ™āļāļĢāļĩāļ•āļ™āļĩāđ‰āļ–āļđāļāļ—āļģāļ‚āļķāđ‰āļ™ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ—āļąāđ‰āļ‡āđƒāļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒ-āđ„āļšāļ”āđŒ (CCR) āļœāļŠāļĄāđāļĒāļāļāļąāļšāđ€āļ–āđ‰āļēāļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™ (PA) āđāļĨāļ°āđ€āļ–āđ‰āļēāđāļāļĨāļšāđ€āļ›āļĨāļ·āļ­āļāđ„āļĄāđ‰ (RA) āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄāļ„āļ­āļ™āļāļĢāļĩāļ• āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ–āļđāļāļ™āļģāļĄāļēāđƒāļŠāđ‰āđāļ—āļ™āļ—āļĩāđˆāļĄāļ§āļĨāļĢāļ§āļĄāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđ€āļžāļ·āđˆāļ­āļ—āļĩāđˆāļŦāļĨāđˆāļ­āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• (āļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA) āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āđ„āļ”āđ‰āđāļāđˆ āļāļģāļĨāļąāļ‡āļ­āļąāļ” āļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āđāļĨāļ°āļāļēāļĢāļ‹āļķāļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļœāđˆāļēāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āđāļĨāļ°āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļšāļ„āļļāļĄ (āļ„āļ­āļ™āļāļĢāļĩāļ• CON) āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļžāļšāļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļĒāļķāļ”āđ€āļāļēāļ°āđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨ āđāļĄāđ‰āļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļĄāļĩāļŦāļĢāļ·āļ­āđ„āļĄāđˆāļĄāļĩāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒ āļāļēāļĢāļžāļąāļ’āļ™āļēāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA āļ„āļĨāđ‰āļēāļĒāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ• CON āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāđāļĨāļ°āļāļēāļĢāļ‹āļķāļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļœāđˆāļēāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļž āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļĒāļąāļ‡āļŠāļĩāđ‰āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļĄāļīāļ•āļĢāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāļŠāļ™āļīāļ”āđƒāļŦāļĄāđˆ āđ€āļžāļĢāļēāļ°āļ„āļ­āļ™āļāļĢāļĩāļ•āđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āļĨāļ”āļ›āļąāļāļŦāļēāļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄAbstractThis concrete was made by using several industrial wastes in both binder and aggregates. Calcium carbide residue (CCR) mixed separately with palm oil fuel ash (PA) and rice husk-bark ash (RA), and was used as a binder instead of Portland cement in the concrete mixture. Furthermore, recycled aggregates were fully replaced natural aggregates in order to cast concrete specimens (CCR-PA and CCR-RA concretes). Concrete properties namely compressive strength, chloride migration, and water permeability of CCR-PA and CCR-RA concretes were evaluated and compared with the conventional concrete (CON concrete). The results indicated that CCR-PA and CCR-RA binders could be used as a new cementitious material in recycled aggregate concrete, even though the CCR-PA and CCR-RA binders contained no Portland cement. The characteristic compressive strength of CCR-PA and CCR-RA concretes developed similar to CON concrete. Moreover, CCR-PA and CCR-RA binders in the mixtures were effectively improving the chloride migration and water permeability of recycled aggregate concretes. These results also suggested that CCR-PA and CCR-RA concretes can be used as a new environmental friendly concrete because of these concretes can reduce as much as CO2 emissions and environmental problems

    A Review: The Effect of Grinded Coal Bottom Ash on Concrete

    Full text link
    This paper offers a review on the use of grinded coal bottom ash (CBA) on the concrete properties as demonstrated by strength test and microstructure test. Amount of CBA from power plant station was disposed in landfill because of the particle shape had a rough particles. By finding an alternative way to gain its surface area by grinding and used as replacement material as cement replacement may give a good side feedback on the strength and morphology of concrete. Most of the prior works studied on the grinded fly ash and grinded rice husk ash. The study on the influence of grinded CBA on the properties of concrete still limited and need more attention Therefore, the review on the effect of grinded CBA on the strength and microstructure of concrete are discussed

    Management and valorisation of wastes through use in producing alkali-activated cement materials

    Get PDF
    There is a growing global interest in maximising the re-use and recycling of waste, to minimise the environmental impacts associated with waste treatment and disposal. Use of high-volume wastes in the production of blended or novel cements (including alkali-activated cements) is well known as a key pathway by which these wastes can be re-used. This paper presents a critical overview of the urban, agricultural, mining and industrial wastes that have been identified as potential precursors for the production of alkali-activated cement materials, or that can be effectively stabilised/solidified via alkali activation, to assure their safe disposal. The central aim of this review is to elucidate the potential advantages and pitfalls associated with the application of alkali-activation technology to a wide variety of wastes that have been claimed to be suitable for the production of construction materials. A brief overview of the generation and characteristics of each waste is reported, accompanied by identification of opportunities for the use of alkali-activation technology for their valorisation and/or management

    Effect of Fly Ash on Chloride Penetration and Compressive Strength of Reclycled and Natural Aggregate Concrete under 5-year Exposure in Marine Environment

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļœāļĨāļ‚āļ­āļ‡āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ•āđˆāļ­āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āđāļĨāļ°āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ• āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āđāļ§āļ”āļĨāđ‰āļ­āļĄāļ—āļ°āđ€āļĨāđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 5 āļ›āļĩ āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļˆāļēāļāđāļĄāđˆāđ€āļĄāļēāļ°āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļ›āļĢāļ°āđ€āļ āļ—āļ—āļĩāđˆ 1 āđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ•āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 0, 15, 25, 35 āđāļĨāļ° 50 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđāļĨāļ°āđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ (W/B) āđ€āļ—āđˆāļēāļāļąāļš 0.40 āđāļĨāļ° 0.45 āļŠāļģāļŦāļĢāļąāļšāļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ• āđāļĨāļ° 0.45 āļŠāļģāļŦāļĢāļąāļšāļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļŦāļĨāđˆāļ­āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĢāļ‡āļĨāļđāļāļšāļēāļĻāļāđŒāļ‚āļ™āļēāļ” 200×200×200 āļĄāļĄ.3 āļŠāļģāļŦāļĢāļąāļšāļ—āļ”āļŠāļ­āļšāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ„āļĨāļ­āđ„āļĢāļ”āđŒāđāļĨāļ°āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āļŦāļĨāļąāļ‡āļˆāļēāļāļšāđˆāļĄāļ„āļ­āļ™āļāļĢāļĩāļ•āđƒāļ™āļ™āđ‰āļģāđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē28 āļ§āļąāļ™ āļ™āļģāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ—āļ”āļŠāļ­āļšāđ„āļ›āđāļŠāđˆāđƒāļ™āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāļ—āļ°āđ€āļĨāļšāļĢāļīāđ€āļ§āļ“āļŠāļēāļĒāļāļąāđˆāļ‡āđƒāļ™āļŠāļ āļēāļ§āļ°āđ€āļ›āļĩāļĒāļāļŠāļĨāļąāļšāđāļŦāđ‰āļ‡ āđ‚āļ”āļĒāđ€āļāđ‡āļšāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ—āļ”āļŠāļ­āļšāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāļ—āļąāđ‰āļ‡āļŦāļĄāļ” āđāļĨāļ°āļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļ­āļēāļĒāļļāđāļŠāđˆāļ™āđ‰āļģāļ—āļ°āđ€āļĨ 5 āļ›āļĩ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļļāļāļŠāđˆāļ§āļ™āļœāļŠāļĄ āļĄāļĩāļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŦāļĨāļąāļ‡āđāļŠāđˆāļ™āđ‰āļģāļ—āļ°āđ€āļĨāđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 5 āļ›āļĩ āļŠāđˆāļ§āļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāļ—āļĩāđˆāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ—āļļāļāļŠāđˆāļ§āļ™āļœāļŠāļĄ āļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļŦāļĨāļąāļ‡āđāļŠāđˆāļ™āđ‰āļģāļ—āļ°āđ€āļĨāļ—āļĩāđˆāļ­āļēāļĒāļļ 5 āļ›āļĩ āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļāļ­āļēāļĒāļļāļšāđˆāļĄ 28 āļ§āļąāļ™ āļāļēāļĢāđƒāļŠāđ‰āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļ›āļĢāļ°āđ€āļ āļ—āļ—āļĩāđˆ 1 āđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļĨāļ‡āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļŠāļąāļ”āđ€āļˆāļ™āļ‹āļķāđˆāļ‡āđƒāļŦāđ‰āļœāļĨāđ„āļ›āđƒāļ™āļ—āļīāļĻāļ—āļēāļ‡āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļ—āļąāđ‰āļ‡āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ• āđ‚āļ”āļĒāļžāļšāļ§āđˆāļē āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāđ€āļĻāļĐāļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ­āļĒāđˆāļēāļ‡āļ™āđ‰āļ­āļĒāļĢāđ‰āļ­āļĒāļĨāļ° 15 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđƒāļŦāđ‰āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāļ•āđˆāļģāļāļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ•āļ˜āļĢāļĢāļĄāļ”āļēāļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļˆāļēāļāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļ‹āļķāđˆāļ‡āļĄāļĩāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 0.45This research studied the effect of fly ash on chloride diffusion coefficient and compressive strength of both recycled and natural aggregate concretes exposed to marine environment for 5 years. Mae-Moh fly ash was used to replace Portland cement at the percentages of 0, 15, 25, 35, and 50 by the weight of binder with various water to binder (W/B) ratios of 0.40 and 0.45 in recycled aggregate mixtures and a W/B ratio of 0.45 in natural aggregate mixtures. Concrete cube specimens of 200×200×200 mm3 were cast and cured in fresh water for 28 days and then were placed in a tidal zone of marine environment. The compressive strengths of the concrete exposed to marine environment for 5 years as well as the total chloride diffusion coefficients of the specimens were determined. The Results revealed that the compressive strengths of recycled aggregate concretes decreased after being exposed in marine environment for 5 years, whereas those of natural aggregate concretes and fly ash increased after 28 days of curing. Evidently, higher in fly ash contents would lower chloride diffusion coefficients of both recycled and natural aggregate concretes. Furthermore, use of fly ash as low as 15% replacement by weight in recycled aggregated concretes could provide lower chloride diffusion coefficient compared to Portland cement containing natural aggregate concrete with W/B of 0.45

    Effect of high volume of fly ash from 5 sources on compressive strength and acid resistance of concrete

    No full text
    The purpose of this research was to examine the effect of high volume of fly ash from various sources on compressive strength and acid resistance of concrete. Fly ashes from 5 sources were collected and classified by an air classifier into 3 groups of different degree of fineness; low, medium, and high fineness. Portland cement type I was replaced by fly ash at the rate of 50% by weight of cementitious materials (Portland cement type I and fly ash) to cast concrete cylinders of 10 cm in diameter and 20 cm in height. After fly ash concreteswere cured in water for 28 days, they were tested to determine the compressive strength. In addition, the specimens were immersed in 3% of sulfuric acid solution and the weight losses of concretes were measured from 3 to 90 days. It was found that the compressive strengths of fly ash concretes were more than 77% of the control concrete when the high fineness fly ashes were used. Each source of the fly ash had different effect on the compressive strength as well as on the sulfuric acid resistance of concrete. The compressive strength of fly ash concrete was improved with the use of high fineness fly ash; however, the sulfuric acid resistance of the concrete tended to decrease as the fineness of fly ash increased
    • â€Ķ
    corecore