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ABSTRACT 

UTILIZATION OF FLY ASH IN CONCRETE 

by 

Chai Jaturapitakkul 

ABSTRACT  

Fly ash, a by-product of coal burning power plants, is produced in large 

quantities each year. It is commonly known that fly ash possesses pozzolanic 

behavior which can enhance the properties of concrete. Due to a lack of proper 

understanding on the formation of fly ash and its performance in concrete, the 

question of quality assurance has frequently been a major concern of engineers using 

fly ash in their construction projects. As a result, much fly ash is disposed of as waste 

material in landfills. Recent environmental concerns and a shortage of landfill space 

have rapidly escalated the disposal cost of fly ash and therefore, the need to seek 

better utilization of fly ash in concrete is then critical. 

The objective of this investigation is to study the effect of fly ash on the 

strength development of mortar and concrete and to develop models to predict its 

performance in these cementitious composites. The fly ash used was carefully 

selected and defined as to its origination, formation, physical and chemical 

compositions, and the storage condition. The original fly ash was fractionated into 

six particle size ranges, each having a relatively uniform particle size, with maximum 

sizes ranging from 5 to 300 microns. The rate of strength gain of these fly ash 

concretes was monitored from 1 to 180 days. The compressive strength for each 

series was correlated to the conditions of fly ash used to determine the major 

parameters affecting the performance of fly ash in mortar and concrete. 



The results from this study show that the particle size of fly ash has a 

significant effect on the strength development of concrete. The combustion 

condition in the boiler has some influence on the performance of fly ash in 

cementitious composites. Of particular importance is the finding that certain 

portions of fly ash when used as cement replacement can improve the strength of 

concrete beyond normal cement as early as 14 days. A correlation to predict the 

compressive strength of fly ash concrete is proposed and provides good agreement 

with experimental results both from this study as well as from other investigators. 
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the Problems 

Fly ash, a by-product of coal burning power plant, is produced in large quantities 

worldwide each year. In 1988 approximately 84 million tons of coal ash were 

produced in the U.S. in the form of fly ash (60.7%), bottom ash (16.7%), boiler slag 

(5.9%), and flue gas desulfurization (16.7%), (Tyson 1990). 	Out of the 

approximately 50 million tons of fly ash generated annually, only about 10 percent is 

used in concrete (ACI 226 1987) while the remaining portion is mostly disposed of as 

waste in the landfill. It is generally more beneficial for a utility to sell its ash, even at 

low or subsidized price, rather than to dispose of it in a landfill since this will avoid 

the disposal cost. In the 1960's and 70's this was not too important since the cost of 

ash disposal was typically less than $ 1.00 per ton. However, due to the more 

stringent environmental regulations starting in the late 1970's, the cost of ash 

disposal has rapidly increased to from $2.00 to $5.00 per ton and is still rising higher 

(Bahor and Golden 1984). The shortage of landfill due to environmental concerns 

has further escalated the disposal cost. The Environmental Protection Agency 

(EPA) estimated in 1987 that the total cost of waste disposal at coal fired power 

plants ranged from $11.00 to $20.00 per ton for fly ash and bottom ash (Courst 

1991). This increasing trend of disposal cost has caused many concerns and 

researchers are urgently seeking means for better utilization of fly ash. 

The cement and concrete industries were the largest users of fly ash averaging 

43% of the total ash sold during 1979 to 1983 (Kelly 1984). Fly ash is used in 

concrete in two distinct ways, one as a replacement for cement and the other as a 

filler. The first is primarily because fly ash possesses pozzolan which, when it reacts 

with lime or calcium hydroxide, can enhance the strength of cementitious 
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composites. The latter is a result of the fine particles of fly ash filling the voids 

between the cement and fine aggregates. The presence of fly ash in concrete has its 

advantages and disadvantages. According to Jane and Best (1982) the advantages 

are: a) improved workability, b) reduced segregation, c) reduce bleeding, d) reduce 

heat evolution, e) reduce drying shrinkage, f) increased resistance to sulfates, g) 

increase ultimate tensile and compressive strength, and h) reduced permeability. 

The disadvantages when fly ash replaced cement on a one-to-one basis by weight 

are: a) lower early strength, b) lower resisting to freezing and thawing, and c) 

increased air-entraining admixture requirement for equal air content. The main 

shortcomings are the fact that fly ash is relatively inert and its contribution takes up 

to 90 days to materialize. The slow rate of strength development could not be 

accepted by the concrete and construction industry since formworks have to be 

removed by 7 to 14 days at which time concrete has to have gained its required 

strength. Furthermore, fly ash from the utility tends to vary significantly from batch 

to batch depending on the type of source coal, its physical and chemical 

compositions, combustion condition and type of boiler, and the storage conditions. 

With all these variables and the fact that fly ash is just a by-product from the power 

industry, the quality assurance of fly ash has always been a major concern to the end 

users in the concrete industry. 

Fly ash has complex characteristics, each differing in fineness, morphology, 

mineralogical composition, and glass content. These characteristics of fly ashes tend 

to affect the hydration process, the hardening and the microstructural development 

of the blend cement paste system (Larbi and Bijen 1990). While much of the 

experimental data reported so far seems to indicate that fly ash enhances the quality 

of concrete, the exact contribution, remains unclear and cannot be determined solely 

by any simple variable alone, such as the physical or chemical characteristic of the 

ash but rather it varies widely in different concretes (Popovics 1986). It is then 
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difficult and maybe inaccurate to predict concrete performance based on typical 

characterization of fly ash alone. Therefore, fly ash acceptability with regard to 

workability, strength development, and durability must always be investigated 

through trial mixtures of concrete containing fly ash (ACI 226 1987). Obviously, such 

a process is tedious and time consuming. 

Utilization of fly ash in concrete is hampered mainly by the lack of 

understanding of this material. The variability of fly ash also invites pessimistic 

attitudes towards use of fly ash in concrete. Although research has been going on 

more than half a century we have not yet achieved a complete and detailed 

knowledge of fly ash. Research on fly ash has taken us deeper in to a maze and the 

physical and chemical characteristics that govern its behavior are only beginning to 

be understood. 

1.2 Scope of Investigation  

The present study was initiated with the concept that fly ash incorporated into 

concrete does not undergo any special treatment except being wet and present in the 

lime environment of cement hydration. During the 90 days waiting period for the 

concrete enhancement by the fly ash, the author believes that the glassy phase of fly 

ash is being resolved. Since fly ash from the utility is available in two different forms, 

i.e. as dry fly ash coming straight out from the electrostatic precipitator and as 

weathered fly ash which is the unsold fly ash stored in a pond in the wet condition for 

6 to 12 months awaiting disposal, the weathered fly ash was believed to have gone 

through the stage of resolving the glassy phase. As such, the weathered fly ash 

should be more reactive than the dry fly ash and therefore more suitable for use in 

concrete. A series of investigation were then conducted to evaluate the properties of 

the dry and weathered fly ash as well as their performance in concrete. Fly ash was 

used as cement replacement, partial replacement, and additive in mortar and 
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concrete. The study later revealed that the weathered fly ash did not perform as 

expected. This was ultimately attributed to its larger particle size distribution which 

was a result of being lumped together while in the pond. 

It was then concluded that particle size and the size distribution of the fly ash 

may be important parameters affecting the strength development of fly ash concrete. 

Studies were carried out to determine the behavior and performance of different 

particle sizes of fly ash in concrete. Fly ash was first fractionated into six small ranges 

of different particle sizes with maximum size ranging from 5 to 300 microns. Since fly 

ash properties vary significantly with the combustion condition and the type of boiler, 

the fly ashes studied here were obtained from two different types of boiler, a dry 

bottom boiler and a wet bottom boiler. The main difference between the two boilers 

is that the dry bottom boiler is designed to have the flame below the fusion 

temperature of the coal ash whereas the wet bottom boiler is higher (Liskowitz et al. 

1983). This produces two different kinds of fly ash and obviously different 

properties. The studies conducted here were also intended to investigate the effect 

of combustion condition and the type of boiler on the properties of the fly ash 

generated. 

Test results show that certain finer sizes of fly ash particles exhibit higher 

rates of reactivity and can provide the same and higher strength of concrete as 

cement as early as 14 days. This finding is extremely critical not just to the question 

of quality assurance of fly ash but also to future potential development of high 

strength concrete using fly ash. While a few researchers have reported previously on 

the early strength development of concrete with finer particle fly ash, they did not 

systematically and quantitatively justify their conclusions regarding the exact fineness 

of the particle size to be used and its performance related to other potential factors 

which may influence the final strength of fly ash concrete. 

	

The present study investigated further to evaluate the properties of concrete 
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made with these fractionated fly ashes. Of particular interest is the resistance of fly 

ash concrete to sulfuric acid attack. The results of this study indicate that concrete 

with a large volume percentage of fly ash as cement replacement exhibits excellent 

resistance to sulfuric acid attack. This finding provides a new cementitious material 

which is suitable for structures in highly corrosive environments. The present study 

has resulted to several important findings and major breakthroughs which have 

never been reported elsewhere. 

Finally, a model is developed to predict the strength of fly ash concrete, using 

the fineness of the fly ash, the percentage of cement replaced by fly ash in concrete, 

control concrete strength, and the age of concrete as the key variables in the model. 

The predicted results are in good agreement with the observed experimental data 

from this study as well as those reported by other investigators. Details of all the 

investigations mentioned above are further elaborated in this dissertation. 



CHAPTER 2 

LITERATURE SURVEY 

2.1 Pozzolanic of Fly Ash  

ACI 116 (1990) defines fly ash as "the finely divided residue resulting from the 

combustion of ground or powdered coal which is transported from the firebox 

through the flue gases". Although it was originally identified as an artificial pozzolan, 

fly ash is now used as a part of the composite that forms the concrete mass, i.e. as a 

substitute for binder and/or the aggregates of concrete. Regardless of what it 

substitutes for in concrete fly ash is known to affect all aspects of concrete properties 

(ACI 226 1987). These aspects are compressive strength, workability, heat of 

hydration, etc. 

Pozzolan, as define by ASTM C-593 (1990), is " a siliceous or alumino-

siliceous material that in itself possesses little or no cementitious value but that in 

finely divided form and in the presence of moisture will chemically react with alkali 

and alkaline earth hydroxides at ordinary temperatures to form or assist in forming 

compounds possessing cementitious properties". 

The pozzolanic reaction is the reaction between constituents of the glass 

phase of fly ash and calcium hydroxide. It is generally assumed to take place on the 

surface of fly ash particles, between silicates and aluminates from the glass phase and 

hydroxide ion in the pore solution (Plowman 1984). The rate of solubility and 

reactivity of these glassy phases in different types of fly ash is unclear since the glassy 

phase of fly ash depends essentially on the combustion condition and type of boiler. 

Fly ash obtained from different boilers such as dry bottom boilers or wet bottom 

boilers, tends to behave differently. As a pozzolan, it is essential that fly ash be in a 

finely divided form as it is only then that silica can combine with calcium hydroxide 

(liberated by the hydrated Portland cement) in the presence of water to form stable 
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calcium silicates which possess cementitious properties (Neville 1983). Although fly 

ash generally comes in a dry and finely divided foam, in many instance, due to 

weathering and transportation process fly ash is being wet and often forms lumps

. Such fly ash remains reactive but to a lesser extent. During hydration portland 

cement produces a surfeit of lime that is released to the pore spaces. It is the 

presence of this lime that allows the reaction between the silica components in fly 

ash and calcium hydroxide to form addition calcium silicate hydrate [C-S-H]. He 

Jun-Yuan, Scheetz, and Roy (1984) showed that the content of crystalline calcium 

hydroxide in the fly ash-portland cement pastes decreases as a result of the addition 

of fly ash, most likely resulting from a reaction of calcium with alumina and silica 

from the fly ash to form addition C-S-H. This process stabilizes the concrete, 

reduces permeability and increases resistance to chemical attacks. He Jun-Yuan, 

Scheetz, and Roy (1984) also suggested that silica in fly ash has to be amorphous, as 

crystalline silica has very low reactivity. 

Fly ash makes efficient use of the products of the hydration of portland 

cement: (1) solution of calcium and alkali hydroxide which exist in the pore structure 

of the cement paste and (2) the heat generated by hydration of portland cement, an 

important factor in initiating the reaction of fly ash (ACI 226 1987). The reaction 

between fly ash and lime released by hydrolysis of clinker silicates not only depends 

on the specific surface of fly ash but also on the calcium hydroxide availability which 

can be related to the rate of hydration of cement and its fineness (Costa and 

Massazza 1983). It seem that the availability of calcium hydroxide is generally 

accepted as one of the key factors affecting the performance of fly ash in concrete. 

However, no one has ever quantitatively verified the need for calcium hydroxide to 

accelerate the rate of strength gain of fly ash concrete. This issue will be addressed 

here. 

All cement particles in the paste of mortars or concrete do not necessary take 



8  

part in hydration. The hydration usually starts from the finest cement particles 

(Neville 1983). The hydrated cement envelopes unreacted cement particles and 

continues to grow from within. However, this reduces the rate of hydration 

continuously so that even after a long time appreciable amounts of unhydrated 

cement may remain in the paste. When fly ash is incorporated in the paste as an 

addition, the cement enveloping process is reduced. Fly ash particles act as neuclei 

for the hydration reaction, thus generating more hydrated products than otherwise 

(Butler and Mearing 1986). 

Fly ash can react with Ca(OH)2  from the cement hydration to form calcium 

silicate hydrates similar in composition to those formed by portland cement. 

However, the rate at which this process occur is very much slower than that of 

portland cement (Berry and Malhotra 1980). This is primarily due to the inert glassy 

phase of fly ash and possibly the availability of calcium hydroxide at that instant. The 

pozzolanic reaction of fly ash in the portland cement paste investigated at 20°C can 

only start after one or two weeks, because only then is the alkalinity of the pore water 

high enough to dissolve the fly ash (Fraay, Bijen, and de Haan 1989). Halse and 

Pratt (1984) conducted tests to measure the Ca(OH)2  content and compressive 

strength at several ages. They concluded that in the fly ash cement systems the 

Ca(OH)2 content reached a maximum value after 7 to 14 days thereafter decreasing 

as a result of the pozzolanic reaction. This decrease in Ca(OH)2  content followed 

dissolution of the fly ash surfaces augmenting the strength of the fly ash concrete. 

Therefore, the rate of strength gain of fly ash concrete is slow at early ages (7 days or 

before), especially when a high percentage of fly ash is used (Naik and Ramme 

1989). The unavailability of Ca(OH)2  at early age may be one of the factors causing 

the slow rate of strength development of fly ash concrete. Therefore, one of the 

possible solutions to problem is to provide addition lime to fly ash concrete mixture. 

This approach will be evaluated here in this investigation. After 28 days, the 
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pozzolanic activity of fly ash continues to contribute to the strength gain of fly ash 

concrete. Compared to the strength at 28-day, the strength of fly ash concrete at one 

year increases by 50 percent while concrete without fly ash increases only 30 percent 

(ACI 226 1987). To achieve an acceptable strength at early age as comparable to 

conventional concrete, a modified concrete mixture (by reducing water to 

cementitious ratio), or some kind of admixture such as superplasticizer must be used 

(Swamy et al. 1983). 

Fly ash can contribute to the strength of concrete in three ways, namely; by a 

reduction of the water content needed for a given slump, increasing the volume of 

paste in the mixture, and by pozzolanic reaction. Fly ashes from different sources 

may have different effect to concrete. The same fly ash may behave differently with 

portland cements of different types (Popovics 1982), since different type of portland 

cement (type I to V) have different chemical composition. 

Many questions on the pozzolanic properties of fly ash have not yet been 

answered. These are the issue of lime availability, the rate of solubility and reactivity 

of the glassy phase in different fly ash, and the proper mix proportion to ensure early 

strength development of fly ash concrete. 

2.2 Chemical Composition of Fly Ash  

In the earliest studies conducted the chemical analysis of fly ash has been given 

prominence. The researchers have sought to relate the performance of fly ash to the 

composition of chemical oxides but with little success (ACI 226 1987). Studies 

conducted so far have revealed that chemical composition is not the sole governing 

criterion for the behavior of fly ash in concrete (Manz 1986). Cabrera et al. (1986) 

examined the chemical and mineralogical compositions, and properties of 18 

samples of fly ashes produced from bituminous coals and concluded that their study 

failed to produce a parameter which could explain or predict the strength differences 
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observed. It should be noted that besides the combustion conditions in the different 

types of boiler which may influence the formation of fly ash, different fineness and 

particle size distribution of fly ash may have significant effect on its performance in 

concrete. The studied carried out here will address and explain some of these issues 

in more details. 

Generally, fly ash derived from various coals have differences in chemical 

composition, but the principal chemicals compositing of fly ash are SiO2, (25% to 

60%) Al2O3, (10% to 30%) and Fe2O3  (5% to 25%). The MgO content of fly ash is 

generally not greater than 5% (Davis et al. 1937). Usually, fly ash from the 

combustion of sub-bituminous coals contains more CaO and less 

Fe2O3 

 than fly ash 

from bituminous coal (Berry and Malhotra 1980). The color of fly ash may range 

from light tan to gray to almost black, depending on the type and quality of the coal 

and on the boiler operation. High carbon content changes the color to gray or black 

(Lane and Best 1982). 

The present ASTM classification of fly ash, C-618 (1990) classifies fly ash in to 

two groups as Class C and Class F. Class F is generally as ash produced by burning 

anthracite or bituminous coal while ash from sub-bituminous coal or lignite is 

defined as Class C. The CaO content of the Class C fly ash is usually higher than 

10% with the sum of the oxides of SiO2, Al2O3  and 

Fe2O3 

 not less than 50%. For 

Class F fly ash the CaO content is normally less than 10 % and the sum of the above 

mentioned oxides is to be no less than 70%. 

Aitcin et al. (1986) studied the physicochemical properties of three Class F 

fly ashes, one French, one Canadian and one American and of four Class C fly ashes, 

two American and two French. They reported that fly ashes from one particular 

class can behave very differently. Two Class F fly ashes have been found to be purely 

pozzolanic, whereas three others, one F and two C, were more or less hydraulic at 

the early stage of hydration before behaving like a more or less pozzolanic material. 



11  

Their study shows that the reactivity of a particular fly ash can be a very complex 

phenomenon that can not be related to just its SiO2  + Al2O3  + Fe2O3  content. 

While Aitcin studied the behavior of fly ash from different sources such as US, 

Canada, and France, he did not realize that even the ash from the same source may 

behave differently if the combustion condition changes (Liskowitz et al. 1983). 

Furthermore, fly ash from the same utility with different particle size distribution and 

storage conditions also perform differently. 

Gebler and Klieger (1986) noted that pozzolanic activity index with cement 

did not show consistent significant correlations with compressive strength. Poor 

correlation between laboratory tests and field performance has often been a concern 

and therefore there is a need to develop a system of parameters controlling 

performance of fly ash in concrete. The high CaO content of many of the lignite and 

subbituminous ashes was misinterpreted as pozzolanic property, they will often form 

cementitious products without any addition of calcium hydroxide. As a result, there 

has been much controversy over the pozzolanic activity tests with cement and lime, 

since persistent poor correlations exist between the results of either test and the 

actual performance in the field when fly ash is used in concrete (Manz 1983). 

2.3 Fineness of Fly Ash  

In general, fly ashes are much finer than portland cements (Davis et al. 1937). Fly 

ash particles are typically spherical, ranging in diameter from 1 to 150 microns (Berry 

and Malhotra 1980). The experiment conducted by Aitcin et al. (1986) showed that 

if the average diameters, D50, of fly ash are smaller, the surface area of the fly ash 

will be larger than those with larger average diameters. According to Lister (1984) 

the fineness of fly ash is controlled by the pulverized coal fineness, mill type and 

burner type. The factors mentioned here are just a few of many parameters which 

may influence the fineness of fly ash. Among the important factors not listed by 
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Lister are the storage condition, ash collection process, and the combustion 

condition. Korac and Ukraincik (1983) reported that the combustion temperature 

was the single most important factor in controlling the quality of fly ash, with better 

physical and pozzolanic properties being produced at higher temperatures. This 

conclusion may be misleading, since in their study the coal was burned at low 

temperature and some coal residue remains, resulting in large porous particles of fly 

ash. It should be noted that the Korac and Ukraincik study is different from this 

investigation in that the fly ashes from the wet and dry bottom boilers used in this 

report were from coal that was completed burned. The main difference among the 

two types of boiler is one reaches the fusion temperature of ash while the other does 

not. 

There are generally two methods to measure the fineness of fly ash. The first 

is by measuring the residue on the 45 microns (No. 325 sieve) and the second is the 

surface area method by air permeability test. Luxan et al. (1989) shows that there is 

no relationship between the percentage of particles retained on 45 microns sieve and 

the type of the original coal. Opinions differ as to whether sieve residue or surface 

area are better prediction of fly ash fineness (Cabrera et al. 1986). In the United 

States, the fineness of fly ash is specified by the residue on the 45 microns only. 

Ravina (1980) found that pozzolanic activity is better indicated by specific surface 

area measurements. However, Lane and Best (1982) suggested that 45 microns 

sieve residue is a more consistent indicator than the surface area. White and Roy 

(1986) concluded that the reactivity of fly ash as measured by the fraction with 

particle size less than 45 microns was an important factor controlling the strength of 

the final fly ash concrete. Their conclusion was derived from the ASTM 

recommendation that fly ash be classified by using the 45 microns sieve. Obviously, 

the portion finer than 45 microns should perform better than the larger portion. 

This can simply be explained by the fact that finer particles have a larger surface area 
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which results in a higher reactivity rate. Furthermore, finer particles can serve as 

filler and reduced voids between cement particles. However, these assumptions 

were never quantitatively verified. 

ASTM C-618 (1990) specifies that not more than 34% by weight of a given fly 

ash be retained on a 45 microns sieve. This specification tends to improve the fly ash 

quality by reducing the LOI (loss on ignition) content since the unburnt carbon 

present in fly ash composes a larger part of the coarser particles (Neville 1983). On 

the contrary Berry et al. (1989) found that the total carbon content in the ash 

materials showed little dependence upon particle size. Particle sizes of fly ash in the 

range of 10 to 50 microns, having much less surface area, often exhibit a slower 

chemical reactions compared to the 1 to 5 microns size. However, these fly ashes 

have been used as micro-aggregate of virtually ideal particles shape. According to 

Slanicka (1991), coarse fly ash was suitable only as a substitute for a portion of fine 

aggregates or as a substitute for unsuitable shape and grading of aggregate. This 

may be due to the fact that coarse particle fly ash is more inert and less reactive than 

a fine one. Ravina (1981) showed that large quantities of coarse fly ash may be used 

efficiently in concrete under thermal curing conditions, with a significant 

improvement in the compressive strength, in contrast to the rather limited 

improvements under normal curing conditions at ages up to 28 days. 

Many researchers have observed that there is a direct increase in strength 

with the increase of fineness. Research carried out by Ukita et al. (1989) showed 

that as the percentage of finer particles ranging from diameters of 1 to 20 microns 

increases, the corresponding strength gain is notable. Similar results have been 

observed by Giergiczny and Werynska (1989). They examined two types of fly ash, a 

low calcium and high calcium fly ash. Variability of chemical composition with grain 

size of fly ashes was analyzed for fractions, 0-20 microns, 20-40 microns, 40-60 

microns, and >60 microns. They found that it is the 0-20 microns fraction that brings 
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about the lowest strength decrease in the mortars. While both groups of researchers 

seem to emphasize their study on the performance of finer particle fly ashes, their fly 

ashes were different from each other as to its formation. The differences between 

these two studies are the method of collecting different sizes of fly ash. Ukita et al. 

(1989) collected fly ash from different locations of the electrostatic precipitator 

whereas Giergiczny and Werynska (1989) ground the original fly ash into different 

sizes. Both cases have certain variables induced in their fly ashes. Fly ashes 

collected by Ukita will have different chemical properties (Liskowitz 1983). For the 

second, grinding fly ash often adds additional metal into the fly ash and also tends to 

change the shape of the fly ash. Slanicka (1991) observed two kind of fly ashes with 

similar chemical and mineralogical composition but with considerably different 

fineness. One has a specific surface of 2008 cm2/g and the other, 5327 cm2/g. He 

concluded that fly ash of similar chemical and mineralogical composition but with 

different fineness has different influence on the property of concrete. The finer 

seems to perform better. The finer fractions (those less than 45 microns) allow the 

hydration and pozzolanic reactions to proceed more rapidly. The study of Harris, 

Thompson, and Murphy (1987) showed that both fineness and water requirements 

have significant correlation with pozzolanic activity. The pozzolanic reactivity with 

Portland cement was influenced by several characteristics of the fly ash, one of which 

is the fineness of fly ash as measured by the 45 microns (No. 325) sieve. 

The pozzolanic activity of fly ash was also found to increase with the increase 

of the specific surface area (Raask and Bhaskar 1975; Ravina 1981). Since specific 

surface area is directly proportional to the fineness of fly ash particles, they have 

attempted to relate the fineness with the compressive strength of fly ash concrete. 

Their results showed that up to 7 days, the strength was little affected by the fineness 

of fly ash which only demonstrated favorable effect after 28 days and became 

pronounced after 90 days. On the contrary, very high fineness of fly ash was reported 
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to fail to show any significant advantages (Costa and Massazza 1983). Ukita et al. 

(1989) reported that the strength was increased significantly for concrete with finer 

fly ash particles only after 90 days and to achieve a strength equivalent to plain 

concrete, it would take up to 90 days and with fly ash content as high as 30%. This 

finding, although supports the concept that finer particles of fly ash may be more 

reactive, does not in suggest a means to accelerate the strength of fly ash concrete so 

it would be equivalent to cement at early age. During the hydration of pozzolanic 

cements made by mixing fly ash (30%) and portland cements (70%), and ground to 

different fineness, Costa and Massazza (1983) found that the reduction of the free 

lime content became appreciable after 7 days when fly ash was very fine (6940 

cm2/g) and after 28 days when the fly ash used was as received (3260 cm2/g). Butler 

and Mearing (1986) suggested that 10 microns be the cutoff point between reactive 

and non-reactive particles since reactivity was a function of surface area and glass 

content and crystalline materials in low calcium ashes were generally non-reactive. 

However, they did not carry out any experiment to supported their conclusions. 

Berry et al. (1989) studied the properties of so called "beneficiated" fly ash in 

mortar. The beneficiated fly ash was defined as fly ash with particle size smaller than 

45 microns. The glass content and the proportion of spherical particles were found 

to increase in the beneficiated fly ash compared to the original fly ash. Beneficiated 

ashes showed improved pozzolanic activity, reduced water demand, and enhanced 

ability to reduce alkali-aggregate reactivity. The surface area data are entirely 

consistent with the particle size distributions. The surface area of the particles less 

than 10 microns is almost twice that of the raw ash, reflecting the large total surface 

of the small spherical particles. The <10 microns product was found to exhibit 

excellent strength development. Although beneficiated fly ash seem to show 

promising results in terms of improved performance of fly ash in mortar, other 

researchers concluded otherwise when used in concrete. Giaccio and Malhotra 
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(1988) also conducted the tests using the beneficiated fly ashes. They showed that 

for concrete made with ASTM type I cement, the use of beneficiated fly ash and 

condensed silica fume, did little to enhance the properties of concrete compared 

with the raw fly ash. Similar to Ukita et al. (1989), Berry simply reported that a finer 

particle size of fly ash performance better. They both failed to clearly identify the 

extent these beneficiated fly ashes perform as compared to regular cement, at early 

age in particular. The cut-off size used is the 45 microns suggested by ASTM. There 

is a need to carry out a through investigation on how the finer particles perform to 

achieve the performance of normal cement. 

It should be noted that general perception was the use of beneficiated fly ash 

or fly ash with finer particle size improved the performance of concrete. However, at 

this moment none has yet demonstrated what type or size of fly ash will provide 

strength performance comparable to conventional cement at an early age. Without 

this definite qualitative and conclusive information, fly ash will not be attractive to 

concrete industry. 

2.4 Loss on Ignition (LOI) of Fly Ash 

ASTM C-618 (1990) limits the loss on ignition of fly ash to not more than 6% for 

Class C and Class F. For high strength concrete, a fly ash with an ignition loss of 3% 

or less is preferable (Task Force Report No. 5 1977). The loss on ignition of fly ash 

is performed at the temperature of 750°C. It is assumed that the loss on ignition is 

approximately equal to the carbon content (ACI 226 1987; Cabrera et al. 1984). 

According to Lister (1984), carbon in the ash is controlled by mill fineness, excess air, 

oil firing and furnace burning conditions, particularly the fuel air mixture, and 

furnace velocity. 

In general, the fly ashes of low carbon content were considerably finer than 

those of high carbon content (Davis et al. 1937). Microscopic examination reveals 
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that carbon particles coarser than the No. 325 sieve are usually more porous and 

amorphous than the finer particles and may have an adverse effect due to absorption 

of air-entraining admixture (Lane and Best 1982). The results tested by Raask and 

Bhaskar (1975) showed that there was a significant decrease of the specific surface 

area of fly ashes after removal of carbon. This would suggest that the silicate 

particles have a much lower specific surface area compared with that of carbon 

residue. Although this conclusion may be justified, the author strongly question the 

validity of this finding since carbon content in most fly ash is in general small. 

	

It will be observed that on the average the strengths of pozzolan-lime-sand 

mortar were considerably higher for the fly ashes of low carbon content than for 

those of high carbon content. The cement containing a fly ash which was moderately 

high in carbon and high fineness exhibited a high water requirement. It is commonly 

accepted that carbon serves as the weak link in the concrete matrix. Carbon also 

absorbs large amount of water as compared to other constituents in the concrete 

mix. In general, the finer the fly ash and the lower the carbon content, the greater 

the activity and the greater the contribution to the strength of mortars and concretes 

(Davis et al. 1937). 

Class F fly ashes usually have loss on ignition values less than 1%, but Class C 

fly ashes range from this low level to value over 10%. The coarse fly ash usually 

contains a higher proportion of carbon than the fine fly ash. The form of the carbon 

particle in fly ash may be very similar to porous activated carbon, which is a product 

manufactured from coal used in filtration and absorption processes (ACI 226 1987). 

Carbon in fly ash was reported to act as activated carbon (Liskowitz 1983). This 

finding makes fly ash with high carbon content a good material for waste stabilization 

and solidification. High loss on ignition of fly ash is often an indicator of the air-loss 

problem; so far, the problem seems to be confined to the Class F fly ashes (ACI 226 

1987). 
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2.5 Fly Ash-Kiln Dust Mixture  

Kiln dust, as the name implies, is collected from the gases emanating from rotary kiln 

as a waste product of cement manufactures. It also has some cementitious 

properties since the main constituent of kiln dust is calcium oxide (CaO). 

The cementitious and pozzolanic qualities of kiln dust and fly ash are 

enhanced in the combination with each other. This action can be understood by 

analyzing their chemical compositions. Kiln dust, which is rich in calcium oxide, 

(CaO) contributes calcium while fly ash contributes silicon oxide (SiO2) to produce 

the C-S-H gel. This process is believed to increase the calcium silicate hydrate of low 

calcium fly ash (Class F). Ramakrishnan (1986) studied the use of cement blended 

with kiln dust versus the properties of concretes made with plain Portland cement. A 

blending of 5% kiln dust and 95% of cement was used. He found that the addition of 

kiln dust prolongs the setting time of blended cement and concrete. The properties 

of the harden concrete made by blended cement are almost the same as those of 

plain concrete. Although this study simply evaluated how kiln dust can enhance the 

properties of harden concrete, it does not have a justified basis for the experiment. 

However, the mix of kiln dust with fly ash has a different perspective in the sense that 

fly ash consists of about 50% of SiO2  while kiln dust has about 50% CaO. The two 

products when combined enhance the overall cementitious property of the mixture. 

Study of the properties of fly ash-kiln dust mix can lead to a beneficial utilization of 

both waste products. 

Recent study on the utilization of fly ash has emphasized large volume uses of 

fly ash. These applications are mostly as structural fill, highways base material, and 

landfill. Such fill is often a mixture of kiln dust or lime, fly ash, and aggregate such as 

sand. The mix proportions for each application must be designed for easy 

placement, good compaction, adequate strength, and be economical. 
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Examples of these large volume uses of fly ash are the following. The largest 

single project involving the combined use of lime, portland cement and fly ash in a 

base or subbase application was the construction during the 1970's of runways, 

taxiways and aprons for the expansion of the Newark Airport. Field tests showed 

that stabilized layered mixtures of hydrated lime, portland cement, fly ash, dredged 

sand, and crushed stone would provide a suitable base for the new pavements. A 

total of 2 million square yards of pavement were placed using a multi-layered 

pozzolanic stabilized base system ranging in thickness from 26 to 40 inches, 

depending on its location. The total cost saving attribute to the use of the lime, 

portland cement, fly ash base was $21 million. Another more than 50,000 tons of 

lime-fly ash-aggregate base course materials were used for the construction of all the 

parking lots for Veteran's Stadium and the Spectrum in South Philadelphia (Collins 

1990). 

Duquesne Light Co. trucked coal ash from two of its power plants to East 

Street to fill a valley 1500 feet long up to 45 feet deep, and up to 250 feet wide. The 

project used 353,000 tons of fly ash and stabilized scrubber sludge to built East Street 

Valley Expressway linking Pittsburgh to its northern suburbs in 1987 (Bickerton et al. 

1990). The most widely used criteria for the acceptability of pozzolanic base 

materials is the compressive strength. A minimum strength value of 400 psi is 

specified by ASTM C-593 (1990) for fly ash used with lime or kiln dust. For parking 

lot construction, 7 day strengths in the 300 to 500 psi range are generally sufficient. 

It should be noted that these applications did not emphasize achieving 

products of higher strength. As a result, final products are simply piles of materials 

in various places. In this study, the author intends to explore the potential use of the 

strength development of kiln dust-fly ash mixture. An optimum mix-proportion of 

these two materials may lead to a low cost cement which can be used for general 

cementing applications such as secondary structural members. 
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2.6 Fly Ash as a Cementitious Material  

It was the intensive studies undertaken by Davis et al. (1937) that introduced the use 

of fly ash for partial cement replacement in concrete. Since then, thousands of 

papers on the studies of fly ash have been published. At present, National Standards 

on fly ash have been established and are accepted worldwide. 

Incorporation of fly ash in concrete improves workability and thereby reduces 

the water requirement with respect to the conventional concrete. This is most 

beneficial where concrete is pumped in to place. Among numerous other beneficial 

effects are reduced bleeding, reduced segregation, reduced permeability, increased 

plasticity, lowered heat of hydration, and increased setting times (ACI 226 1987). 

The slump is higher when fly ash is used (Ukita et al. 1989). However, the use of fly 

ash in concrete has many drawbacks such as high variability, low air entrainment and 

low early strength development. According to Thomas, Matthews, and Haynes 

(1989), curing is important in fly ash concrete. With the reductions in curing period 

resulting in lower strength and more permeable concrete. The strength of fly ash 

concrete appears to be more sensitive to curing than plain concrete. The sensitivity 

tends to increase as the fly ash content increases. 

The use of fly ash as cementitious material even though it seems rather 

promising, the quality assurance of the fly ash is very much uncertain. For instance, 

the 3 day compressive strength of fly ash concrete is normally reduced by the use of 

Class F fly ashes and may be reduced with Class C fly ashes (ACI 226 1987). This is 

because Class C fly ash has higher CaO content which contributes some cementitious 

properties so the early strength does not decrease as much as Class F fly ash. For fly 

ash to be used as a replacement for cement, it must be comparable to cement in 

terms of strength contribution at any age. This result was also confirmed by Langley, 

Carette, and Malhotra (1989). This is probably the most greatest deficiency that 
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needs to be improved. The low early strength of fly ash concrete occurred under hot 

and humid conditions too. Tests conducted by Ravindrarajah and Tam (1989) 

showed that the compressive strength of fly ash concrete at early ages are lower than 

those for the control concrete. The general behavior of concrete with fly ash was 

similar to that reported in available literature in spite of the tests being conducted 

under hot and humid environment. It should be noted that most of the reported 

studies tend to show a lower concrete strength due to the presence of fly ash, none 

has yet suggested a solution to actually enhance the property of concrete 

economically. 

Significant economies could be made by using high fly ash contents in most 

concretes. Cost saving can be as high as 25% of the cost of materials when 

compared with conventional portland cement concretes provided the strength are 

comparable (Munn 1984). For optimum economy, Class F fly ash is normally used at 

the rate of 15% to 25% of total cementitious materials while Class C fly ash is in the 

range of 15 to 35% (ACI 226 1987). If fly ash is used in high quantity, it will lower 

the strength of concrete below the desired limit, thus making the concrete not 

suitable for use as structural members. 

Apart from the quality of fly ash and cement, mix proportioning is believed to 

be the most single important factor influencing the properties of fly ash concrete. 

Chen and Hsu (1987) showed that the fly ash concrete with proper proportioning can 

exhibit a strong structural performance similar to that of normal concrete and also be 

able to provide some cost advantages. Proportioning of fly ash concrete with the aim 

of achieving higher strengths and/or enhancing desirable properties has naturally 

been a major point of interest. However, it remains a challenge with no major break 

through. Since fly ash essentially depends on the hydration process of cement, with 

careful proportioning of cement and fly ash optimum mixes could be achieved. In 

proportioning the fly ash concrete mixes, the concept of water-cement ratio in 
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conventional concrete has to be modified into the so-called "water-cementitious 

ration" (Popovics 1982). The term "cementitious" includes all binding materials 

which include cement, kiln dust, fly ash, and silica fume, if available. 

The proportioning techniques seem to treat fly ash as a substitute for other 

basic materials in concrete. Three basic methods of mix proportioning have been 

used over the years (Berry and Malhotra 1980; Swamy, Ali, and Theodorakopoulos 

1983). 

1. Partial replacement of cement. 

2. Addition of fly ash as fine aggregate. 

3. Modified partial replacement. 

	

The first approach requires a direct replacement of cement by fly ash on 

a one to one basis and is not known to yield strengths comparable to cement in 

conventional concrete. Swamy (1984) showed that 30% replacement by weight 

would give all the desirable material properties and structural behavior almost 

identical to those of concrete of similar strength without fly ash. This statement is 

not accurate since other materials such as high dosage of superplasticizer were used. 

Since, fly ash is an inert material without some special treatment it is practically 

impossible to compare with cement. Costa and Massazza (1983) reported that 

replacing 30% of portland cement by fly ash reduced 1 day strength by about 50%. 

Fly ash concretes with cementitious ratios of up to 75% by weight and an aggregate-

cement ratio of 6 were found to have adequate compressive and flexural strengths to 

be used as lean concrete base or subbase in pavement structures (Haque, Langan, 

and Ward 1984). Malhotra and Painter (1989) concluded that concrete 

incorporating high volume of Class F fly ash (200 kg/m3  of concrete) had high 

density, satisfactory early age strength, and high later age strength. Again, the mix 

proportion used in their study contains significant amount of superplasticizer. It is 

unclear whether the strength observed was a contribution of fly ash or the additive. 
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Furthermore, due to the high cost of superplasticizer, mix proportions were not 

economical. Much research has shown that any percentage replacement of portland 

cement in concrete with fly ash on a one for one basis (either by volume or by 

weight) results in lower compressive and flexural strengths up to about 3 months of 

curing, with the development of greater strengths at and beyond 6 months (Berry 

and Malhotra 1980; Munday, Ong, and Dhir 1983). This may be attributed to the 

resolution of fly ash particles which enable silica content to react with the existing 

Ca(OH)2 in the concrete matrix. The low early strength of the fly ash concrete, it is 

believed that the glassy phase remains intact and therefore no reaction occurs. 

The second method is simply a direct addition of fly ash to the conventional 

mixes and usually will result to higher compressive strengths since the amount of 

cementitious materials (cement + fly ash) is increased. It was found that addition of 

fly ash generally increased strength of concrete at all ages (Berry and Malhotra 

1980). However, the addition of fly ash was found to prolong the initial and final 

setting times of cements (Costa and Massazza 1983). This is mainly because fly ash is 

an inert material and therefore slowed down the overall rate of reaction. ACI 

Committee 226 (1987) concluded that the use of fly ash in concrete generally caused 

an increase in both the initial and final setting time. 

The technique of modified partial replacement requires either cement or fine 

aggregate to be replaced with fly ash and further addition of fly ash as in the second 

method. Partial replacement of both the portland cement and of the fine aggregate 

were found to be the most effective way to improve the strength of concrete (Butler 

and Mearing 1986). Since the size of fly ash is normally smaller than both cement 

and fine aggregate, any replacement of these two constituents by fly ash will result in 

better workability and less water demand for the mix. 

Each of these three methods of proportioning yields concretes of different 

qualities. To achieve desirable properties of a fly ash concrete, one has to carefully 
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design the needed mix proportions. So far, there is no standard guideline for the 

procedures to be used. Trial mixes have been the way of life for this process, largely 

because of lack of understanding of the actual characteristics and performance of fly 

ash in concrete. The present study will attempt to address these problems and pin-

point certain key factors for designing mix proportions. 

2.7 High Strength Fly Ash Concrete  

ACI 363 committee on high strength concrete has specified high strength concrete as 

concrete with a compressive strength of 6000 psi (41 MPa) or greater (ACI 363 

1990). The basic concept to produce high strength concrete is to lower the 

water/cement ratio as much as possible, usually in the range of 0.25 to 0.30. In 

achieving this w/c ratio, many high strength concretes incorporate chemical 

admixtures, such as water reducing agents or high-range water reducing agents or 

superplasticizers and mineral admixtures such as fly ash or silica fume. The use of a 

good quality fly ash, meeting specification of ASTM C-618 Class F, is a must in the 

production of high strength concrete (Task Force Report No. 5, 1977). The fly ash 

added serves two purposes, one as pozzolanic material to provide additional C-S-H, 

and the other as filler to reduce voids between cement particles. Optimum amounts 

are in the range of 10% to 15% by weight of the cement. This may vary considerably 

in different areas due to the physical and chemical properties of the pozzolan and its 

reaction with various cements. When the combination between silica fume and fly 

ash was used, the optimum mix is a combination of 10% silica fume with 15% fly ash 

or slag by volume (Mehta and Aitcin 1990). Silica in the combined mixture provides 

early strength to concrete while fly ash which is an inert material serves as retarder 

but provides long term strength. Most high strength concrete mixes presently used 

contained both silica fume and fly ash. 

Researchers at CANMET have developed high strength concrete of 50 MPa 
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(7250 psi) at 28 days by using water-reducing superplasticizer and incorporating of 

up to 40% fly ash by weight of cement (Malhotra 1984). Baoyu, Anqi, and Pengfei 

(1989) presented experimental results on the use of concrete incorporating 

condensed silica fume and fly ash to reduce cement content, lower temperature rise 

due to hydration, and to enhance early strength. Both experimental and field studies 

indicated that compared with a reference concrete (without condensed silica fume 

and fly ash) the concrete mixture containing condensed silica fume, fly ash, helped to 

save 38% cement, lower the heat of hydration by 40%, and showed a slight increase 

in strength and durability. 

The use of fly ash in high strength concrete undoubtedly has been 

demonstrated to be beneficial to the integrity of the composites as well as the 

economical aspect of the final products. In any event, it should be noted that in such 

an application, fly ash was often used as generic material. While global performance 

of the fly ash high strength concrete is satisfactory, a clear understanding of how fly 

ash actually performs in high strength concrete environment remains unknown. This 

is primarily due to the lack of understanding of the behavior of the fly ash use. The 

present study uses series of fly ash of known origin, formation, physical and chemical 

characteristics. With these information, the author intends to study the role of fly ash 

in high strength concrete. Of particular interest will be the key parameters of fly ash 

governing the strength development of the final products. 

2.8 Corrosion Resistance of Fly Ash Concrete  

In a highly corrosive environment, conventional concrete often corrodes rapidly due 

to chemical attack of both concrete and the steel reinforcement, costing an 

enormous amount of money annually for repairs and maintenance of these 

structures. To improve the resistance of concrete against corrosion, many new 

cement-based materials such as polymer concrete, sulfate resistance concrete, etc. 
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have been developed. Unfortunately, these products are expensive and often 

economically not feasible for use in practice. One of the common forms of corrosion 

in concrete is probably due to chemical attack. These forms of chemical attack are 

the leaching out of cement, attack from sulfate and chloride from sea water and acid 

solutions. 

To improve concrete durability against acid attack, many methods have been 

suggested. In general, the concept is to make concrete denser to produce lower 

permeability. Such low permeability concrete can be obtained by lowering the 

water/cement ratio of the mixes. Other methods suggested are the addition of 

polymer materials as additive, the use of sulfate-resisting cement, high-alumina 

cement or pozzolanic materials. 

Perhaps the weakest links of the concrete products which are vulnerable to 

chemical attack are calcium hydroxide and calcium carbonate. To prevent these 

constituents from acid attacks, pozzolanic materials, such as fly ash, are introduced 

into concrete. The silica content in the fly ash reacts with free lime or calcium 

hydroxide generated from the hydration process of cement to form calcium silicate 

hydrate compound. This process ties up the available calcium hydroxide 

components, making it unavailable for acid attack. Furthermore, the C-S-H gel 

tends to fill up the remaining air voids in between fine aggregates and cement 

particles, making concrete denser, more impermeable and therefore more durable 

(Lane and Best 1982; Butler and Mearing). 

With this common knowledge, many researchers have used fly ash to enhance 

the ability of concrete to resist chemical attack. Nasser and Lai (1990) and Irassar 

and Batic (1989) reported that Class F fly ash was a good source of pozzolan which 

could improve resistance of concrete to sulfate attack. The data on corrosion 

resistance of concrete samples monitored for more than three years indicated that 

concrete samples with 20% of cement replaced by fly ash protect the reinforcing bars 
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from corrosion better than plain concrete (Maslehuddin, Saricimen, and AI-Mana 

1987). Sheu, Quo, and Kuo (1990) studied the corrosion resistant property of fly ash 

mortar with different particle sizes (37, 48, and 74 microns) of fly ash in sodium 

sulfate solution. They concluded that among those mortar specimens tested, the 

ones with finer particle size (37 microns) of fly ash had greater resistance to sulfate 

attack than the control sample (without fly ash). These reported studies confirm the 

common knowledge on sulfate resistance of fly ash concrete but have not clearly 

revealed the actual corrosion resistant process nor indicated the exact characteristics 

or quantity of fly ash needed to achieve effective sulfate resistance. This was partly 

because the fly ash used was generic in nature which tends to vary widely as stated 

earlier. Without knowing the exact characteristics of fly ash, it is impossible to draw 

any definite conclusions which can be practically implemented. Although, the 

minimum proportion of fly ash required for sulfate resistance in concrete was 

believed to vary it was suggested that the fly ash content should not be less than 20% 

(ACI 225 1988). This suggestion is not clear in the sense that no specific information 

was given about the type of fly ash to be used and what extent of resistance that the 

amount of fly ash can provide to concrete. 

	

The above corrosion studies were all due to sulfate attack on concrete. Acid 

attack is often found to be another major problem for the durability of concrete. For 

values of pH in the range between 3 to 6, the attack of acid progresses at a rate 

approximately proportional to the square root of time (Neville 1983). Severe 

damage on concrete sewer systems can cause by the bacterial action of Thiobacillus 

concreteavor, especially in warm climates. Sulfur-reducing bacteria reduce the 

sulfates present in natural water to produce hydrogen sulfide as a waste product. 

Another group of bacteria takes the reduced sulfur and oxidize it back to sulfuric 

acid (Thornton 1978). Thus attack from sulfuric acid occurs and gradually dissolves 

and deteriorates the concrete surface. This process is commonly known as "crown 
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corrosion" in sewage collection systems. If such a corrosion can be prevented using 

fly ash concrete, the result would be very importance and beneficial. Obviously, fly 

ash to be used must be clearly defined as to its size, origination, and characteristics so 

that a better understanding on the acid resistant performance can be established. 

This concept will be evaluated here using different sizes and quantities of fly ashes. 

2.9 Fly Ash Concrete Strength Model  

In 1918, Duff A. Abrams (Abrams 1918) emphasized the importance of water in 

concrete mixtures, and showed that the water is the most important ingredient, since 

a very small variation in water content produces more important variations in the 

strength and other properties of concrete than similar changes in other ingredients. 

The equation for this behavior is in the form of: 

f'c = A/Bx (2.1) 

where 

f

'c is the compressive strength of concrete 

x is the ratio of volume of water to the volume of cement 

A and B are constants whose values depend on the quantity of the cement 

used, age of the concrete, curing condition, etc. 

	

The relation given above holds so long as the concrete is not too dry for 

maximum strength and the aggregate not too coarse for a given quantity of cement 

(workable mix). 

Neville (1983) mentioned that Abrams' law, although established 

independently, is a special case of a general rule formulated by Feret in 1896. This 

was in the form 

f'c  = K{c/(c+w+a)}2 	 (2.2) 

where 
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c, w, a are the absolute volumes of cement, water, and air respectively 

K is a constant 

These two equations serve as the basis of a relationship between strength and 

cementitious components. These equations do not incorporate any contribution 

from other cementitious materials such as fly ash, kiln dust, silica fume, etc. 

Dunstan (1986) modified Feret's formula with the assumption that the actual 

strength of concrete will be the combined product of the strength produced by the 

portland cement and those contributed by the addition of fly ash. His proposed 

expression was 

fc+f  = (1+?) 

f'

c 	 (2.3) 

with the final formula in the form of: 

fc+f  = [1 + Emf(1-f)n/(1-f)] K {c/(c+w+a)}2 	 (2.4) 

where 

fc+f  is the total strength produced by cement and fly ash 

Em  is the maximum efficiency index of fly ash to portland cement 

f is the fly ash content = weight of fly ash/weight of cement+fly ash 

n is constant 

The values of Em  and n can both be calculated from actual concrete strength 

data. Three mixes are normally needed since there are three unknowns in the 

equations to be solved for. These include the constant K in Feret's relationship, and 

the values of Em  and n. Therefore, a mix with no fly ash and mixes with two 

different percentages of fly ash material will permit the calculation of all three 

values. Dunstan's proposed equation is actually an empirical correlation derived 

from experiments. 

Another basic equation which is often used to correlate strength with cement 

content was proposed by Bolomey (Eq. 2.5). Popovics (1982) modified the Bolomey 

formula from 
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f'c  = K{c/w -Z} 	 (2.5) 

to include the effect of pozzolan, his equation is in the form of: 

f'c = B{(c+p)/w - 0.5}-CFn 	(2.6) 

where 

f

'c  is standard compressive strength of concrete at 28 days 

c is cement content 

p is pozzolan content 

w is water content 

(c+p)/w is cementitious materials-water ratio 

F = fly ash content in the cementitious materials and equals to 100p/(c+p), percent 

by weight. 

B, C, Z, and n are constants 

The suggested equation is again an empirical correlation with all constants 

being obtained through series of experiment data. The final equation was in the 

form of 
 

f'c = 3250 {(c+p)/w -0.5} - 0.6F2 	(2.7) 

Eriksen and Nepper-Christensen (1981) also modified Bolomey's formula by 

considering fly ash as a portion of cement. They also incorporated air content factor 

into the water content term. Their formula is shown in Eq. (2.8): 

f'c  = K [(c+kf)/(w+a) -0.5] 	 (2.8) 

where 

k is the activity index of fly ash 

Bolomey formula was later modified by Slanicka (1991) to also include the 

contribution of fly ash with an introduction of a new parameter ki, the activity index 

of fly ash. 

qi 
f'c = K [c/(w+a) +ki{Fi/(w+a)}-Z] 	(2.9) 
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He also modified Abrams' rule to 

f'c= A/Bx 	(2.10) 

where 

ki is activity index of fly ash and used as 0.25 

q i  is and empirical exponent corresponding to a given sort of fly ash Fi. The 

introduction of the exponent qi  is justified by the fact that with the increasing dose of 

fly ash its contribution to the strength of concrete does not increase in a linear way. 

x = [c/w +ki(Fi/w)qi ]-1 	(2.11) 

	

All of the fly ash concrete strength models (Eriksen and Nepper-Christensen 

1981; Popovics 1982; Dunstan 1986; Slanicka 1991) are empirical models. The 

model proposed by Eriksen and Nepper-Christensen does not consider the fineness 

of fly ash and their constant, the activity index, "k", is a constant for all kinds of fly ash 

(Eriksen and Nepper-Christensen 1981). In Popovics's formula, which is only valid 

for Class F fly ash, there are three experimentally determined empirical parameters 

(Popovics 1982). For Dunstan's model, three mixes are needed to solve for the three 

unknown constants (Dunstan 1986). Only Slanicka's model considers the effect of 

the fineness of fly ash on the strength of fly ash concrete which is usually 

incorporated in k and q. Fly ash with different fineness will have different constants. 

But the values of empirical coefficients are dependent on the properties of the 

cement, fly ash, and aggregates used, as well as, the curing condition. The formula is 

valid only for the conditions for which the constants were derived (Slanicka 1991). 

Since all these investigations were conducted on a generic original fly ash 

whose properties varied widely, the proposed empirical equations predict results 

only for a rather specific condition of fly ash concrete. These equations could not be 

applied to any other conditions of fly ash concrete. Therefore, it is essential to 

develop a new strength model which is developed from studying the properties of 
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series of fly ash concrete produced from known properties and characteristics of fly 

ash. This study will be attempted here as part of the objectives of this dissertation. 



CHAPTER 3 

OBJECTIVES OF THE DISSERTATION  

The purpose of this study is to establish a simple combination of easily determined 

characteristics which can predict the performance of fly ash when used in concrete. 

To achieve this, it is essential to determine the properties of fly ash which affect the 

strength of concrete. Chemical composition, particle size distribution, and boiler 

combustion conditions have been selected as important factors. At the end of this 

study, fly ash concrete strength model is proposed and compared to the results 

obtained from the experiment and from other researchers results. The experimental 

work is divided into 6 parts as follow: 

3.1 Effect of Boiler Types on Fly Ash Product  

To better understand the behavior of fly ash, one needs to know how it was 

formulated. In this study, fly ash from two types of boiler, dry bottom and wet 

bottom, were used to make fly ash concrete. The strengths these concretes were 

correlated to the properties of each fly ash which has different formation since one 

was formulated at a temperature above the fusion of ash and the another below. 

The results from this study will help us understand the effect of combustion condition 

on the property of fly ash in concrete. 

3.2 Properties of Fly Ash 

Most investigations reported previously used fly ash as generic materials and often 

did not thoroughly understand all the properties of the fly ash added into concrete. 

In this study, prior to using any of the fly ashes to make concrete, physical and 

chemical properties of each fly ash were determined in accordance with ASTM 

standard. Since fly ash contains different particle size (from 1 to 300 microns) and its 

properties tend to vary significantly, it is then critical to study the effect of particle 
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size on the strength of concrete. Fly ashes were separated into 6 different sizes with 

each fractionated particle size distribution range between 0-5, 0-10, 0-15, 0-20, 0-30, 

and 0-45 micron. The fractionated fly ashes and the original feed of fly ashes were 

once again reevaluated for their physical and chemical properties. This is to verify 

whether any variations exist among the various particle size distributions due to the 

fractionated process. With all the physical and chemical characteristics known for 

each fly ash, it is now ready to proceed to make fly ash concrete. 

3.3 Fly Ash Mortar and Fly Ash Concrete 

Normal and high strength fly ash concrete were made using fly ash of different 

particle sizes. The compressive, bending, and splitting tensile strengths and modulus 

of elasticity of fly ash concrete were examined and compared with the control 

concrete. Fly ash concrete made from the original feed of fly ash were also tested in 

the same manner as the fractionated fly ash concrete. The strength of these fly ash 

concretes both from the fractionated and the original feed fly ashes should help us 

understanding the role of particle size and its effect on the strength development of 

fly ash concrete. Thus a mix design can be formulated with confidence to achieve the 

desirable strength and durability of fly ash concrete. High strength concrete with and 

without silica fume were also cast and tested. The effect of fractionated fly ashes and 

silica fume concrete were investigated and compared with the control concrete. Fly 

ash concrete if to be practical must produce compressive strength of the same or 

higher than the conventional concrete without fly ash at early age i.e., before 28 days. 

	

Dry and weathered fly ash were also used to make fly ash concrete. The 

effect of the dry and weathered fly ashes were studied and compared with the control 

concrete when fly ash is used as a replacement, as a partial addition and replacement 

of sand, and as an additive to concrete. The objective of this study is meant to 

investigate the effect of storage condition and the develop a process to accelerate the 
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rate of strength gain of fly ash concrete. The setting times of fly ash-cement paste 

were also evaluated. 

3.4 Fly Ash-Kiln Dust Mortar  

Kiln dust and fly ash were mixed together in a mixture with and without cement. The 

optimum mix proportion between fly ash and kiln dust was determined based on 

their compressive strengths. Setting times of fly ash-kiln dust paste were also 

examined and compared with the normal cement paste. The objective of this study is 

to develop a usable product of fly ash-kiln dust mixture which may be used as 

construction materials. 

3.5 Corrosion Resistance of Fly Ash Mortar  

The corrosion resistance of fly ash mortars was investigated using fly ashes of known 

physical and chemical characteristics. Fly ash is introduced as a pozzolan into mortar 

with the basic knowledge that it will react with the calcium hydroxide in mortar, thus 

reduces the amount of free lime which is vulnerable to acid attack. Fly ash mortar 

specimens made of different percentages of fractionated fly ash and normal cement 

were immersed into a concentrated sulfuric acid solution to evaluate for their 

resistance to acid attack. The strength and weigh losses due to acid attack will be 

monitored. The results should provide a definite rate of degradation and the exact 

type and quantity of fly ash needed to maintain the strength and integrity of the fly 

ash concrete. 

3.6 Fly Ash Concrete Strength Model 

Finally, the study will attempt to find a relationship between the properties of fly ash 

and its behavior in concrete. A fly ash concrete strength model will be proposed 

based on the key parameters affecting the properties of fly ash concrete. With this 
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model, it is expected to predict the compressive strengths of fly ash concrete at any 

ages. 



CHAPTER 4 

MATERIALS AND EXPERIMENTAL METHODS 

4.1 Experimental Program  

In this chapter, the experimental programs for studying the influence of selected 

parameters on the compressive strength of mortar and concrete containing different 

kind of fly ashes with different particle sizes were conducted. Boiler types, chemical 

composition, fly ash fineness, and particle size distributions of fly ash are among the 

main parameters to be studied. The effect of fly ash on the compressive, bending, 

splitting tensile strength, modulus of rupture, and modulus of elasticity of mortar and 

concrete were carried out using different mix proportions and different fly ashes. 

The study also includes the development of high strength concrete using fly ash and 

investigation on the corrosion resistance of the fractionated fly ash concrete. In 

addition, fly ash-kiln dust mortars were also mixed and tested for their compressive 

strength. 

Fly ashes used in this study were collected from a utility in the Northeastern 

section of the U.S. Fly ashes of different sources named DH, H, M, and P were used 

in this program. The last sample was obtained in both dry and weathered states as 

described earlier. Simulation of the storage condition as "washed and soaked" fly ash 

were produced in the laboratory. 

The standard ASTM 2"x2"x2" cube and 3"x6" cylinder specimens for study the 

compressive strengths of mortar and concrete were used, respectively. The 3"x6"x27" 

beam specimens were selected for studying the bending or flexural strength of 

concrete. All tests were performed on a MTS closed-loop servo hydraulic testing 

machine. Details of these test programs are planned as follows: 
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4.2 Materials 

Materials used in this study consist of standard portland cement type I, Ottawa sand, 

siliceous sand (river sand), coarse aggregate, fly ash, kiln dust, silica fume, 

superplasticizer, dispersing agent, and water. 

Cement-A standard portland cement type I. 

Sand-Two kinds of sand have been selected in this program. Graded sand 

predominant graded between the No. 300 (0.06 mm) sieve and the No. 100 (0.150 

mm) sieve conforming to ASTM C-778 (1990) was used as a standard sand. Another 

local siliceous sand (river sand) passing through sieve No. 4 (opening size 4.75 mm) 

was also used for casting mortar and concrete. 

Coarse Aggregate-Crushed  basalt coarse aggregate size of 3/8" was used for 

casting concrete. 

Fly Ash-Four different kinds of fly ash were selected in this experiment: 

1) DH fly ash 

2) Dry and weathered fly ashes 

3) Wet bottom fly ash 

4) Dry bottom fly ash 

Dry and weathered fly ashes were used to evaluate the affect of weathering 

on the property of fly ash. The Dry bottom and Wet bottom fly ashes were selected 

to study the influence of boiler and its combustion condition. The DH fly ash was 

used since it consists of known combustion condition at various states of power 

demand. 

All fly ashes were generated in the local power plants. The local utility 

provided two kinds of fly ash of different storage conditions, dry and weathered. Dry 

fly ash is the type of fly ash coming out from the precipitators and is usually stored in 

the hopper or in the silo for immediate delivery if the demand exists. The excess fly 

ash is often mixed with agitated water from a nearby river and pumped into two big 
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storage ponds. The ash in the pond is commonly known as weathered fly ash. 

To investigate the effect of boiler types upon the fly ash product, wet bottom 

and dry bottom fly ashes are selected for the study. These two types of fly ashes were 

fractionated into different particle sizes. The fractionated fly ashes were cast and 

tested to study its effect on the strength of concrete and mortar. 

Kiln Dust-Kiln dust used in this experiment was generated from a local 

cement manufacture. 

Silica Fume-Silica fume is a by-product from the silicon metal industry. It 

often comes in very fine particle of size less than 1 micron. Normally consists of 96-

98% of reactive SiO2. Silica fume used in this study is in powder form. The addition 

of silica fume was intended to produce high strength concrete. 

Superplasticizer-Superplasticizer is a common additive for concrete. It is 

normally used to lower the water-cement ratio in concrete. The process is often 

employed to produce high strength concrete. 

Dispersing Agent-Sodium hexametaphosphate (NaPO3) was normally used 

as a dispersing agent. The addition of dispersing agent in the fly ash concrete mix 

was to ensure that lumps of weathered fly ash were dispersed into fine particles and 

could, as a result, be more reactive. 

Water-Tap water was used throughout the experiment program. 

4.3 Test Program 

43.1 Chemical Composition of Fly Ashes, Kiln Dust, and Cement 

Chemical composition of fly ashes, kiln dust, and cement were determined by X-Ray 

Fluorescence (ASTM D-4326 1990). 

4.3.2 Particle Size Analysis of Fly Ash 

For DH, dry and weathered fly ashes, the distribution of particle sizes larger than 75 
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microns (retaining on 200 sieve) are determined by wet sieve analysis, while the 

distribution of particle sizes smaller than 75 microns are determined by 

sedimentation process, using a hydrometer (ASTM D-422 1989). 

For the fly ash from the wet bottom and dry bottom, the particle sizes of fly 

ash larger than 75 microns were determined by wet sieve analysis while the particle 

sizes smaller than 75 microns were determined by Microtrac, a laser-based particle 

sizer. 

4.3.3 Fly Ash Fineness  

The fineness of fly ash were measured using two different methods; the Blaine air 

permeability and the fineness by the 45 microns (No. 325) sieve. 

For the Blaine air permeability, the fineness was in term of the specific 

surface expressed as total surface area in square centimeters per gram, or square 

meters per kilogram, of fly ash. The results obtained from the Blaine fineness was a 

relative fineness rather than absolute fineness. The test procedure followed ASTM 

C-204 (1990). 

The fineness of fly ash retained on the sieve 45 microns (No. 325 sieve) was 

determined by the amount of fly ash retained when wet sieved on the No. 325 sieve 

in accordance with the ASTM C-430 (1990) test method, except that the fly ash 

sample was used instead of hydraulic cement. 

43.4 Setting Time of Cement-Fly Ash and Cement-Fly Ash-Kiln Dust Paste 

Setting time of cement-fly ash and cement-fly ash-kiln dust paste were determined by 

Vicat needle and Gillmore needles. The test methods followed ASTM C-191 (1990) 

for Vicat test and ASTM C-266 (1990) for Gillmore test. 
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4.3.5 Fly Ash Mortar  

Fly ash from DH, H, dry, and weathered fly ashes were mixed with cement and 

Ottawa sand. The replacement of a portion of portland cement by fly ash was varied, 

0%, 15%, 25%, and 35% by weight of cementitious (cement + fly ash) materials. 

The specimens were mixed and cast in accordance with ASTM C-109 (1990). All 

specimens were cured in saturated lime water and tested at the age of 1, 3, 7, 14, 28, 

56, and 90 days. 

4.3.6 Fly Ash with Kiln Dust  

Dry and weathered fly ashes were used to study the effect of fly ash, kiln dust, and 

cement on the strength of mortar. The standard ASTM 2"x2"x2" cube mortars were 

prepared and tested for their compressive strengths. The selection of a 2"x2"x2" 

cube rather than the standard 3"x6" cylinder was that fly ash mortar was more a 

resemblance of cement and the 2"x2"x2" cube is a standard specimens used for 

testing cement based on ASTM specification. These series of test were carried out in 

three phases as follows: 

Phase I 	Dry and weathered fly ashes were mixed with kiln dust and river sand. 

The percentage of fly ash was varied, 20%, 40%, 60%, and 80% by 

weight of kiln dust plus fly ash. The specimens were tested for their 

compressive strengths up to 90 days. 

Phase II 	Only weathered fly ash was mixed with kiln dust. The percentage of fly 

ash was varied from 10% to 90% with increments of 10%. The water 

to cementitious (fly ash + kiln dust) materials ratio was kept constant 

at 0.275. Fly ash-kiln dust samples were tested for compressive 

strength at the age of 1, 3, 7, 14, 28, 56, 90, and 180 days. 

Phase III 	Dry and weathered fly ashes were mixed with kiln dust, river sand, and 

cement. The percentage of cement and fly ash were varied, 20%, 40%, 
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60%, and 80% by weight of cementitious (cement + fly ash + kiln 

dust) materials. All specimens were cured in saturated lime water and 

tested at the age of 1, 3, 7, 14, 28, 56, 90, and 180 days. 

4.3.7 Fly Ash as a Replacement  

Dry and weathered fly ashes were used as a replacement of cement. By keeping the 

water, river sand, and cementitious (cement +fly ash) materials as constants, cement 

was replaced by fly ash. The replacement of fly ash (dry or weathered) was varied 

from 10% to 40% by weight of cementitious materials. All the specimens were cured 

in saturated lime water. The compressive strengths of 2"x2"x2" cube mortars were 

tested at the age of 1, 3, 7, 14, 28, 56, 90, and 180 days. 

4.3.8 Fly Ash as a Partial Addition and Replacement of Sand  

In this test, 10% by weight of sand was replaced by fly ash and after that fly ash was 

added in mortar. The addition of fly ash was varied from 10 to 40% by weight of 

cement. Both dry and weathered fly ashes were used. All the specimens were cured 

in saturated lime water until the time of testing. This is to ensure that moisture and 

lime are available to provide any potential reaction which may occur. The 

compressive strengths of 2"x2"x2" cube mortars were tested at the age of 1, 3, 7, 14, 

28, 56, 90, and 180 days. 

4.3.9 Fly Ash as an Additive  

Dry and weathered fly ashes were used as an additive in the mortar. By keeping the 

cement, river sand, and water as constants, fly ash was added directly in the mix. 

The addition of fly ash was varied from 10% to 40% by weight of cement. All the 

specimens were cured in saturated lime water and tested for their compressive 

strengths at the age of 1, 3, 7, 14, 28, 56, 90, and 180 days. 
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4.3.10 Soaked and Washed Fly Ash  

Dry fly ash was soaked and washed for used in this experiment. The soaked fly ash 

was done by covering the dry fly ash with water for 1 week. Everyday the soaked fly 

ash was stirred to make sure that every particles of fly ash were soaked by water. 

After 7 days, the water of soaked fly ash and soaked fly ash were used for casting 

mortar specimens. 

The washed fly ash was prepared by covering the dry fly ash with water, then 

stirring it until it mixed together. The fly ash slurry was then allowed to settle for one 

day and then the water was replaced with tap water. The process was repeated the 

next day. By repeating this process for 1 week, the washed fly ash was created for 

casting mortar specimens. The washed and soaked fly ash were used as an additive 

and as a replacement of cement. The 2"x2"x2" cube mortars were selected to 

investigate the compressive strengths. The compressive strengths were tested from 1 

to 180 days. Table 4.1 shows the mix proportions of the experiment program from 

section 4.3.5 to 4.3.10 

4.3.11 Effect of Fractionated Fly Ashes on the Strength of Concrete  

Dry and wet bottom fly ashes were separated into different particle sizes by using the 

Micro-Sizer Air Classifying System (Figure 4.1). Six particle size distributions of 

each fly ash were fractionised from small to large. The fractionated fly ashes from 

dry, wet bottom, and the original feed fly ashes were used as a replacement of 

cement 15%, 25%, 35% and 50% by weight of cementitious materials. The 

compressive strengths of fractionated fly ash concrete were tested from 1 day to 180 

days. The effect of particle size from 0-5, 0-10, 0-15, 0-20, 0-30, 0-44 micron, and the 

original feed fly ashes are investigated and compared with the control concrete. The 

3"x6" cylinder was used to determine the compressive strength of fractionated fly ash 

concrete. The mix proportion of this test program is shown in Table 4.2. 
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Table 4.1 Mix Proportion  

Series Sam 
C S/C 

W 
D 
g/1 

-- 
-- 
-- 

-
- 
-- 

-- -- 

40 
40  

Cem. Dry 
FA 

Wea. 
FA 

-- 
-- 
15% 
-- 
25% 
-- 
35% 
-- 
25% 

Kiln 
Dust 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

Ottawa 
Sand 

2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 

River 
Sand 

-- 
-- 

-- 
-- 
-- 
-- 
-- 
-- 
-- 

C 

0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 

I 

PC 
PD15 
PW15 
PD25 
PW25 
PD35 
PW35 
DD25 
DW25 

100% 
85% 
85% 
75% 
75% 
65% 
65% 
75% 
75% 

-- 
15% 
-- 
25% 
-- 
35% 
-- 
25% 
-- 

A 100% -- -- -- 2.75 -- 0.485 -- 
II B15 85% 15% -- -- 2.75 -- 0.485 -- 

C25 75% 25% -- -- 2.75 -- 0.485 -- 
D35 65% 35% -- -- 2.75 -- 0.485 -- 

C 100% -- -- -- 2.75 -- 0.50 -- 
III FA15 85% 15% -- -- 2.75 -- 0.50 -- 

FA25 75% 25% -- -- 2.75 -- 0.50 -- 
FA35 65% 35% -- -- 2.75 -- 0.50 -- 

HC 100% -- -- -- -- 2.75 0.50 -- 
IV HD15 85% 15% -- -- -- 2.75 0.50 -- 

HW15 85% -- 15% -- -- 2.75 0.50 -- 

KD20 -- 20% -- 80% -- 2.75 0.55 -- 
KW20 -- -- 20% 80% -- 2.75 0.55 -- 
KD40 -- 40% -- 60% -- 2.75 0.55 -- 

V KW40 -- -- 40% 60% -- 2.75 0.55 -- 
KD60 -- 60% -- 40% -- 2.75 0.55 -- 
KW60 -- -- 60% 40% -- 2.75 0.55 -- 
KD80 -- 80% -- 20% -- 2.75 0.55 -- 
KW80 -- -- 80% 20% -- 2.75 0.55 -- 

Notes: 
1. C - Cementitious Materials (Cement+Fly Ash+Kiln Dust) 

S - Sand 
W - Water 
D - Dispersing Agent, Sodium Hexametaphosphate(NaPO3) 

2. Series: I. Dry or Weathered Fly Ash + Cement + Ottawa Sand 
II. DH Fly Ash + Cement + Ottawa Sand 
III. H Fly Ash + Cement + Ottawa Sand 
IV. H Fly Ash + Cement + River Sand 
V. Dry or Weathered Fly Ash + Kiln Dust + River Sand 
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Table 4.1 Mix Proportion (Continued)  

Series Sam. 
C S / C W 

Cern. Dry 
FA 

Wea 
FA 

Kiln 
Dust 

Ottawa 
Sand 

River 
Sand C 

VI 

WK10 
WK20 
WK30 
WK40 
WK50 
WK60 
WK70 
WK80 
WK90 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 

-- 
-- 
-- 
-- 
-- 

-- 
-- 
-- -- 

-- -- 

-- 
-- 
-- 
-- 

-- 

-- -- 

0.275 
0.275 
0.275 
0.275 
0.275 
0.275 
0.275 
0.275 
0.275 

VII 

AKD00 
AKD20 
AKW20 
AKD40 
AKW40 
AKD60 
AKW60 
AKD80 
AKW80 
BKD00 
BKD20 
BKW20 
BKD40 
BKW40 
BKD60 
BKW60 
CKD00 
CKD20 
CKW20 
CKD40 
CKW40 
DKD00 
DKD20 
DKW20 
EK0 

20% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
40% 
40% 
40% 
40% 
40% 
40% 
40% 
60% 
60% 
60% 
60% 
60% 
80% 
80% 
80% 
100% 

-- 
20% 
-- 
40% 
-- 
60% 
-- 
80% 
-- 
-- 
20% 
-- 
40% 
-- 
60% 
-- 
-- 
20% 
-- 
40% 
-- 
-- 
20% 
-- 
-- 

-- 
-- 
20% 
-- 
40% 
-- 
60% 
-- 
80% 
-- 
-- 
20% 
-- 
40% 
-- 
60% 
-- 
-- 
20% 
-- 
40% 
-- 
-- 
20% 
-- 

80% 
60% 
60% 
40% 
40% 
20% 
20% 
-- 
-- 
60% 
40% 
40% 
20% 
20% 
-- 
-- 
40% 
20% 
20% 
-- 
-- 
20% 
-- 
-- 
-- 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 
2.75 

0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 

Notes: 
1. C - Cementitious Materials (Cement+Fly Ash+Kiln Dust) 

S - Sand 
W - Water 

2. Series: VI. Weathered Fly Ash + Kiln Dust 
VII. Dry or Weathered Fly Ash + Cement + Kiln Dust + River Sand  
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Table 4.1 Mix Proportion (Continued) 

Series Sam. Cem. 
(g) 

Dry FA. 
(g) 

Wea. 	FA. 
(g) 

River Sand 
(g) 

Water 
(mL) 

VIII 

JC 
RD10 
RD20 
RD30 
RD40 
RW10 
RW20 
RW30 
RW40 

500 
450 
400 
350 
300 
450 
400 
350 
300 

- 
50 
100 
150 
200 
- 
- 
- 
- 

- 

- 
- - - 50 100 150 200 

1375 
1375 
1375 
1375 
1375 
1375 
1375 
1375 
1375 

250 
250 
250 
250 
250 
250 
250 
250 
250 

IX 

ED10 
ED20 
ED30 
ED40 
EW10 
EW20 
EW30 
EW40 

500 
500 
500 
500 
500 
500 
500 
500 

100 
150 
200 
250 
- 
- 
- 
- 

- 
- 

- 
100 
150 
200 
250 

1325 
1325 
1325 
1325 
1325 
1325 
1325 
1325 

250 
250 
250 
250 
250 
250 
250 
250 

X 

AD10 
AD20 
AD30 
AD40 
AW10 
AW20 
AW30 
AW40 

500 
500 
500 
500 
500 
500 
500 
500 

50 
100 
150 
200 
- 
- 
- 
- 

- 
- 
- 
- 
50 
100 
150 
200 

1375 
1375 
1375 
1375 
1375 
1375 
1375 
1375 

250 
250 
250 
250 
250 
250 
250 
250 

Table 4.1 Mix Proportion (Continued) 

Series Sam. Cem. 
(g) 

Soaked FA 
(g) 

Washed FA 
(g) 

River Sand 
(g) 

Water 
(mL) 

XI 

JC 
JR15 
JA15 
TR15 
TA15 
JR25 
JA25 
TR25 
TA25 

500 
425 
500 
425 
500 
375 
500 
375 
500 

- 

75 

75 
- - 125 125 - 
- 

- 
- 
- 
75 
75 
- 
- 

125 
125 

1375 
1375 
1375 
1375 
1375 
1375 
1375 
1375 
1375 

250 
250 
250 
250 
250 
250 
250 
250 
250 



Figure 4.1 Micro-Sizer Air Classifying System 

Table 4.2 Mix Proportion of Fractionated Fly Ash Concrete 

Ingredients 
Fractionated Fly Ash (Dry and Wet Bottom) 

by Weight 

0 15% 25% 35% 50% 

Cement 1.00 0.85 0.75 0.65 0.50 
Fly Ash -- 0.15 0.25 0.35 0.50 
Sand 2.00 2.00 2.00 2.00 2.00 
Aggregate 3.00 3.00 3.00 3.00 3.00 
Water 0.50 0.50 0.50 0.50 0.50 
Water/(Cem+FA) 0.50 0.50 0.50 0.50 0.50 
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4.3.12 Effect of Fractionated Fly Ashes on the Strength of Mortar  

For fly ash mortar, a standard size of 2"x2"x2" cube was used to determine the 

compressive strength of fractionated fly ash mortars. The mix proportion of 

fractionated fly ash mortar is shown in Table 4.3. 

Table 4.3 Mix Proportion of Fractionated Fly Ash Mortar 

Ingredients 
Fractionated Fly Ash (Dry and Wet Bottom) 

by Weight 

0 15% 25% 50% 

Cement 1.00 0.85 0.75 0.50 
Fly Ash -- 0.15 0.25 0.50 
Sand 2.75 2.75 2.75 2.75 
Water 0.50 0.50 0.50 0.50 
Water/(Cem+FA) 0.50 0.50 0.50 0.50 

4.3.13 Effect of Calcium Oxide (CaO) on the Strength of Fractionated Fly Ash 

Mortar  

The fractionated fly ashes, 6F, 16F, 1C, 18C, and the original feed of dry and wet 

bottom fly ashes, are used to mix to form cement mortar. An extra calcium oxide is 

added into the mix in 10%, 20%, and 30% by weight of fly ash+calcium oxide. First, 

calcium oxide was allowed to absorb the mixing water for 3 to 5 minutes and then 

mixed together. Fly ash, then added into the mixer and mixed with the calcium 

oxide slurry. After that cement and sand were added and mixed with the calcium 

oxide-fly ash slurry. The fractionated fly ash mortar with calcium oxide was cast, 

cured, and tested as the previous section for fly ash mortar. The mix proportion of 

fractionated fly ash mortar with calcium oxide is shown in Table 4.4. 
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Table 4.4 Mix Proportion of Fractionated Fly Ash Mortar Mixed with Calcium Oxide 

Sam 
No. 

Type 
of 

Fly Ash 

Mix Proportion CaO/(Fly Ash+CaO) 

(%) Cement CaO Fly Ash 

CA0 - 1.00 - - 0 

DCA0 Dry 0.65 - 0.350 0 
DCA10 Dry 0.65 0.035 0.315 10 
DCA20 Dry 0.65 0.700 0.280 20 
DCA30 Dry 0.65 0.105 0.245 30 

WCA0 Wet 0.65 - 0.350 0 
WCA10 Wet 0.65 0.035 0.315 10 
WCA20 Wet 0.65 0.700 0.280 20 
WCA30 Wet 0.65 0.105 0.245 30 

6CA0 6F 0.65 - 0.350 0 
6CA10 6F 0.65 0.035 0.315 10 
6CA20 6F 0.65 0.700 0.280 20 
6CA30 6F 0.65 0.105 0.245 30 

16CA0 18F 0.65 - 0.350 0 
16CA10 18F 0.65 0.035 0.315 10 
16CA20 18F 0.65 0.700 0.280 20 
16CA30 18F 0.65 0.105 0.245 30 

1CA0 1C 0.65 - 0.350 0 
1CA10 1C 0.65 0.035 0.315 10 
1CA20 1C 0.65 0.700 0.280 20 
1CA30 1C 0.65 0.105 0.245 30 

18CA0 18C 0.65 - 0.350 0 
18CA10 18C 0.65 0.035 0.315 10 
18CA20 18C 0.65 0.700 0.280 20 
18CA30 18C 0.65 0.105 0.245 30 

CA10 - 0.965 0.035 - 0 
CA20 - 0.930 0.070 - 0 
CA30 - 0.985 0.105 - 0 

Note: Water/(Cement+CaO+Fly Ash) = 0.50 
(Cement+Fly Ash +CaO):Sand Ratio = 1:2.75 

4.3.14 High Strength Fly Ash and Silica Fume Concrete  

The very fine particle sizes of fly ashes, i.e. the particle smaller than 5 microns, were 

employed to produce high strength fly ash concrete. Fifteen and twenty five percent 

of fly ash by weight of cementitious materials were used in the concrete as a 
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replacement for cement. Silica fume in the powder form was also used in the same 

proportion as the fly ash. The compressive strength of the high strength fly ash 

concrete and silica fume concrete were determined and compared. The mix 

proportion of high strength fly ash and silica fume concrete is shown in Table 4.5. 

Table 4.5 Mix Proportion of High Strength Fly Ash and Silica Fume Concrete 

Ingredient CSF, Control 
(lb) 

15% Repl. 
(lb) 

25% Repl 
(lb) 

Cement 10 8.5 7.5 
Fly Ash or Silica Fume -- 1.5 2.5 
River Sand 20 20 20 
Aggregate, 	Basalt 3/8" 30 30 30 
Super P. 100 ml 100 ml 100 ml 
Water 4.17 4.17 4.17 
Water/(Cementitious) 0.417 0.417 0.417 

4.3.15 Bending Strength of Fly Ash Concrete  

Concrete beams with dimension of 3"x6"x27" were used to evaluate the bending 

strength of fly ash concrete (using simple beam with third-point loading). The 

specimen has a test span within 2% of being three times its depth as tested. The test 

procedure was in accordance with ASTM C-78 (1990). 

Fly ash concrete with a 25% replacement of the original feed of dry and wet 

bottom fly ashes as a cement in cementitious materials was used in this study. The 

bending strengths of fly ash concrete beams were detennined at the age of 28 days 

and 90 days. The 3"x6" cylinders were also cast and tested at the same time as the 

concrete beams. Splitting tensile and compressive strengths were also tested on the 

same date of the beams. The relationship between compressive strength and 

bending strength of fly ash concrete and control concrete were evaluated. 
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4.3.16 Relationship between Tensile Strength (Splitting Test) and Compressive 

Strength of Fractionated Fly Ash Concrete  

Splitting is an indirect method for measuring tensile strength of concrete. The 

standard test method for splitting tensile strength of cylindrical concrete specimen is 

given by ASTM C-496 (1990). The 3"x6" cylinders of fractionated fly ash concrete at 

the age of 180 days were used to investigate the compressive and splitting tensile 

strength. 

4.3.17 Modulus of Elasticity of Fractionated Fly Ash Concrete  

Compressive strengths of fractionated fly ash concrete were tested using the MTS 

closed loop machine. The rate of loading was control by 2-clip gages using the 

loading rate recommended by ASTM C-469 (1990). The test set up for compressive 

strength and modulus of elasticity is presented in Figure 4.2. Compressive load and 

displacement of concrete under the compressive load were recorded by data 

acquisition board and transferred to the computer. The modulus of elasticity of 

fractionated fly ash concrete was taken to be the slope of the stress-strain curve at 

50% of the ultimate strength. The modulus of elasticity of fractionated fly ash 

concrete were determined by using 3"x6" cylinder specimens. Fractionated fly ash 

concretes with 15%, 25%, 35%, and 50% replacement were studied and compared. 

4.3.18 Corrosion Resistance of Fly Ash Mortar  

Fractionated fly ashes, 6F, 16F, and the original feed of dry bottom fly ash (DRY), 

and wet bottom fly ash (WET) were mixed with cement to form fly ash cement 

mortar. Standard 2-inch cubes were cast and cured in saturated lime water about 60 

days before being put into the acid pond. The mix proportions used are tabulated in 

Table 4.6. The percentage of fly ash used in the mixes was 25 and 50 percent by 

weight of cementitious (cement+fly ash) materials. Fly ash was used as cement 
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replacement. The water to cementitious materials ratio of all mixes was kept 

constant at 0.5. Fly ash cement mortar samples and the control samples (no fly ash) 

were then immersed in the H2SO4 acid solution with a concentration of 100 m1/1. All 

samples were kept under the same corrosive environment until the date of testing. 

To evaluate the extent of the damage caused by acid attack, the samples were 

removed from the acid pond and washed with tap water. The samples were then 

weighed at the saturated surface dry condition. The weight loss was then determined 

by comparison with the weight of original sample recorded earlier.  

Figure 4.2 Test Set up for Compressive Strength and Modulus of Elasticity  
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Table 4.6 Mix Proportion of Fly Ash Mortar to Resist Acid Attack 

Sample Cement Fly Ash Sand W/(C+F) Type of Fly Ash 

CF 1.00 - 2.75 0.50 - 

DRY25 0.75 0.25 2.75 0.50 DRY ORIGINAL FEED 
WET25 0.75 0.25 2.75 0.50 WET ORIGINAL FEED 
6F25 0.75 0.25 2.75 0.50 6F 
16F25 0.75 0.25 2.75 0.50 16F 

DRY50 0.50 0.50 2.75 0.50 DRY ORIGINAL FEED 
WET50 0.50 0.50 2.75 0.50 WET ORIGINAL FEED 
6F50 0.50 0.50 2.75 0.50 6F 
16F50 0.50 0.50 2.75 0.50 16F 

4.3.19 Fly Ash Concrete Strength Model  

Attempts are made to relate the compressive strength of fractionated fly ash 

concrete and selected parameters of fly ash. The results of fractionated fly ash 

concrete with different mix proportions were used to find the proposed model. After 

that, the data of fly ash concrete from other researchers were also used to verify the 

validity of the proposed model. 



CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 Chemical Composition 

5.1.1 Chemical Composition of Fly Ashes, Kiln Dust, and Cement  

Table 5.1 shows the chemical composition of fly ashes, kiln dust, and cement used in 

this study. According to ASTM C-618 (1990), all fly ashes are classified as Class F fly 

ash since the oxide of SiO2  + Al2O3  + Fe2O3  are higher than 70%. Dry and 

weathered fly ashes have a little different in chemical composition. Dry fly ash has 

53.53% of 

SiO2 

 while the weathered fly ash has 50.15%. 

Al2O3 

 content for the dry 

and weathered fly ashes is 26.70% and 29.11%, respectively. The calcium oxide 

content which is believed to effect the rate of reactivity is 1.65% for the dry fly ash 

and 1.70% for the weathered. According to the results, there is no chemical change 

associated with the process of weathering. 

Table 5.1 Chemical Composition of Fly Ashes, Kiln Dust, and Cement 

Constituent 
Dry FA Wea FA H 

Dry FA 
DH 

1983 

FA 

1990 

Kiln 
Dust 

Cement 
Type I 

SiO2  53.57 50.15 50.64 50.50 50.95 12.29 19.96 
Al2O3  26.70 29.11 27.19 29.10 29.30 7.07 8.92 

CaO 1.65 1.70 2.31 1.55 1.39 43.23 59.33 
MgO 0.77 0.81 0.79 0.70 0.88 2.73 3.10 
Fe2O3  5.08 6.12 11.51 12.40 12.11 3.32 2.72 
Na2O 0.30 0.51 0.29 - 0.28 0.39 0.43 
K2O 1.99 1.95 2.18 2.69 1.90 2.59 0.88 
SO3  0.70 0.10 0.64 0.34 0.53 5.56 2.76 

Moisture(%) 0.23 0.65 0.21 0.36 0.23 - - 

The results of chemical composition of DH fly ash, which was tested in 1983 

(Liskowitz et al. 1983) and again in 1990, were very close. It can be concluded that 

the chemical composition of fly ash does not change with time when stored under dry 

54  
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condition. Also, Yasuda, Niimura, and Iizawa (1991) reported that fly ash stored 

under wet field conditions for about 3 months was not impaired in quality. 

The chemical composition of kiln dust is close to cement because it is a by-

product of cement manufactures. Since kiln dust has a high content of CaO, it 

processes some cementing property. It is noted that the SO3  content of kiln dust is 

5.56% while for cement is 2.76%. The moisture content of the fly ashes are found to 

be very close and low. The dry fly ashes have as little moisture content as 0.21% by 

the dry weight. However, the moisture content of weathered fly ash which was air 

dried in the laboratory about a month before use was a little higher than the other 

dry fly ashes. The moisture content of DH fly ash reduced from 0.36 in 1983 to 0.23 

in 1990. According to ASTM C-618 (1990), the moisture content of fly ash can be 

allowed to be as high as 3%. All fly ashes used in this experiment have low moisture 

contents which are within the limit of ASTM C-618. 

5.1.2 Chemical Composition of Fractionated Fly Ashes  

The chemical composition of fractionated fly ashes are shown in Table 5.2. Sample 

CEM is the cement sample used in this study. Samples DRY and WET are the fly 

ashes from the original feed of dry and wet bottom ashes, respectively. 3F is the 

finest fly ash sample of the dry bottom ash and 13F is the finest sample of the wet 

bottom ash. The coarsest fly ashes samples of dry and wet bottom ash are 1C and 

18C, respectively. 

Both types of fly ashes are classified as Class F fly ash according to ASTM C-

618 (1990). Most of the fractionated fly ashes have some slight variation in the oxide 

composition when the particle sizes changed. It has been reported that separation of 

Class F with high calcium fly ash into size fraction does not reveal major chemical 

morphological or mineralogical speciation between particles (Hemming and Berry 

1986). The SiO2  content tends to be lower when the particle size is larger. The 
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major differences in chemical compositions of the two fly ashes are in the SiO2, 

Fe2O3, and CaO contents. Samples of the dry bottom fly ash are about 10% richer 

in SiO2  than the wet bottom fly ash. The CaO content of the dry bottom fly ash 

varies from 1.90% to 2.99%, while for wet bottom fly ash, the variation is from 6.55% 

to 7.38%. 

Fe2O3 

 content of wet bottom fly ash is two times higher than that of the 

dry bottom fly ash. The highest concentration of 

Fe2O3 

 of each type of fly ashes is in 

the coarsest particle sizes, i.e., 1C and 18C. 

Table 5.2 Chemical Composition of Fractionated Fly Ashes and Cement 

Chemical Composition (%) 

Sam LOI SO3  SiO2  Al2O3  Fe2O3  CaO K2O MgO Na2O 

CEM 0.73 2.53 20.07 8.84 1.41 60.14 0.86 2.49 0.28 

3F 4.97 1.69 49.89 26.94 5.43 2.99 1.76 0.99 0.33 
5F 4.10 1.53 50.27 26.74 5.30 2.95 1.74 0.93 0.33 
6F 3.12 1.09 51.40 26.54 4.91 2.72 1.71 0.74 0.31 
10F 2.52 0.72 51.98 26.23 4.44 2.28 1.60 0.54 0.29 
11F 2.04 0.53 51.27 26.28 4.42 2.02 1.55 0.49 0.26 
1C 1.46 0.39 53.01 26.50 5.66 1.90 1.61 0.56 0.24 
DRY 2.75 0.98 52.25 26.72 5.43 2.41 1.67 0.69 0.28 

13F 2.67 3.81 38.93 24.91 12.89 6.85 2.10 1.55 1.31 
14F 1.94 3.47 39.72 25.08 13.02 6.71 2.11 1.50 1.31 
15F 1.88 3.33 40.25 25.02 13.12 6.60 2.11 1.47 1.30 
16F 2.06 3.05 40.65 24.92 13.26 6.55 2.09 1.41 1.26 
18F 1.94 2.94 41.56 24.47 14.21 6.58 2.01 1.40 1.17 
18C 2.55 2.40 43.25 23.31 17.19 7.38 2.00 1.30 0.88 
WET 2.05 3.13 41.54 24.74 14.83 6.89 2.07 1.43 1.17 

It is interesting to note that after fly ash was fractionated into different sizes, 

loss on ignition (LOI) of the finest particle is the highest. The LOI content gradually 

decreases as the particle size increases. The coarser size of fly ash often has lower 

LOI content than the raw fly ash (Berry et al. 1989). Ravina (1980) also had the 

same observation, that the finest particle of fly ashes has the highest LOI values. 

The results obtained by Ukita, Shigematsu, and Ishii (1989) also showed that the 



57  

chemical composition did not changed when the mean diameter of fly ash changed 

from 17.6 microns to 3.3 microns while LOI increased from 2.78 to 4.37. These 

results are in conflict with the report of ACI 226 Committee (1987) and of Sheu, 

Quo, and Kuo (1990) which stated that the coarse fraction usually has a higher LOI 

than the fine fraction. 

5.2 Particle Size Analysis of Fly Ash 

5.2.1 Particle Size Analysis of Dry, Weathered, H, and DH Fly Ashes 

The particle size distributions of dry, weathered, H, and DH fly ashes are shown in 

Figures 5.1, 5.2, and 5.3 respectively. 

In Figure 5.1, it can be observed that the weathered fly ash has more finer 

particles than the dry one. The extra finer particles are believed to be clay or dust 

since the weathered fly ash was in the pond for a long period of time and collected all 

kinds of contaminants from the river water which it was mixed. Furthermore, the 

average particle size of the weathered fly ash depends a great deal on the location in 

the pond where ash was collected. The closer to the discharge to the pond, the 

larger is the average particle size of fly ash. 

Considering the particle size distribution of H dry and weathered fly ashes in 

Figure 5.2, it is seen that the distribution of both curves are very close. This means 

that the weathered fly ash, produces in the laboratory by soaked dry fly ash for 2 

months, did not influence the particle size distribution of the ash. 

5.2.2 Particle Size Analysis of Fractionated Fly Ashes 

The particle size distributions of fractionated fly ashes from the dry and wet bottom 

boilers are shown in Figures 5.4 and 5.5, respectively. The curves for the original 

feed fly ashes are not as steep as others since it has a wider range of size distribution. 
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Figure 5.1 Particle Size Distributions of Dry and Weathered Fly Ashes 

Figure 5.2 Particle Size Distributions of H Dry and Weathered Fly Ashes 
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Figure 5.3 Particle Size Distribution of DH Fly Ash 

Figure 5.4 Particle Size Distributions of Fractionated of Dry Bottom Fly Ashes 
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Figure 5.5 Particle Size Distributions of Fractionated of Wet Bottom Fly Ashes 

	

From the original feed, each type of fly ash was fractionated into six ranges. 

As shown in Figures 5.4 and 5.5, the particle size of fly ash varied from 0-5.5 micron 

to 0-600 micron. In case of the 3F fly ash, the finest of dry bottom fly ash, 3F (90%-5 

um) means that 90% of the fly ash particles are smaller than 5 microns. The mean 

diameters of 3F and 13F are 2.11 and 1.84 microns, respectively while the average 

diameters of the coarsest particle sizes, 1C and 18C, are 39.45 and 29.25 microns, 

respectively. For wet bottom fly ash, 13F is the finest with 18C as the coarsest. The 

original feed of wet bottom fly ash was found to be finer than the original feed of dry 

bottom fly ash. The particle sizes of original feed of dry fly ash vary from about 1 

micron to 600 microns with the mean particle of 13.73 microns. For the original feed 

of wet bottom fly ash, the largest particle size are 300 microns with the average 

diameter of 6.41 microns. When the particle sizes are smaller, they are more 

spherical particles in the fraction (Hemming and Berry 1986). 

	

The color of the fractionated of dry bottom fly ashes from fine to coarse 
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varied from light gray to dark gray while for the wet bottom fly ashes the color 

changed from light brown to dark brown. This may be the coarser particles possess a 

higher portion of bottom ash which is in black color. Usually, the color of fly ash 

varies widely from light tan to brown and from gray to black (Lane and Best 1982). 

The same observation result on the variation of color was also reported by Yasuda, 

Niimura, and Iizawa (1991). 

5.3 Fineness of Fractionated Fly Ash 

The fineness of fly ashes both by wet sieve analysis and by the Blaine fineness 

together with the specific gravity of fly ashes are shown in Table 5.3. Mean diameter, 

the diameter of which 50 percent of particles are larger than this size, is also 

presented in this table. According to ASTM C-618 (1990), the fractionated 1C fly 

ash is the only sample that fails to meet the fineness requirement since the retained 

of the fly ash on sieve No. 325 is higher than 34%. 

Two methods were used to measure the fineness of fractionated fly ashes. 

The first method is by determining the residue on the 45 microns (No. 325) sieve. 

Using the sieve No. 325 method, the fractionated fly ash samples 3F, 5F, 6F, 10F, 

13F, 14F, 15F, 16F and 18F have the same fineness since all of them have zero value 

retained on this sieve. The second method is the surface area measurement by air 

permeability test. Opinions differ as to whether sieve residue or surface area are 

better indicator of fly ash fineness (Cabrera, et al. 1986). In the United States, the 

fineness of fly ash is specified by the residue on the 45 microns sieve only. Ravina 

(1980) found that pozzolanic activity is better indicated by specific surface area 

measurements but Lane and Best (1982) argued that the 45 microns sieve residue is 

a more consistent indicator than the surface area. White and Roy (1986) concluded 

that  the fineness parameter given in the Blaine fineness is not as important as the fly 

ash size fraction less than 45 microns. The author disagrees with White and Roy 
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especially in the case of fractionated fly ashes since the latter sections proves that the 

active particle size of fly ash are smaller than 45 microns. 

Table 5.3 Fineness of Cement and Fractionated Fly Ashes 

Sam. Specific Fineness Mean 
No. Gravity Retained 45 urn Blaine Diameter 

(g/cm3) (%) (cm2/g) (um) 

CEM 3.12 - 3815 - 

3F 2.54 0 7844 2.11 
5F 2.53 0 6919 2.66 
6F 2.49 0 4478 5.66 
10F 2.42 0 2028 12.12 
11F 2.40 1.0 1744 15.69 
1C 2.28 42.0 1079 39.45 

DRY 2.34 20.0 3235 13.73 

13F 2.75 0 11241 1.84 
14F 2.73 0 9106 2.50 
15F 2.64 0 7471 3.09 
16F 2.61 0 5171 5.54 
18F 2.51 0 3216 9.84 
18C 2.42 29.0 1760 29.25 
WET 2.50 10.0 5017 6.41 

DRY FA 2.25 22.0 3380 11.51 
WEATHERED 2.20 18.0 2252 13.22 

H 2.30 15.0 2748 13.15 
DH 2.24 26.0 2555 18.30 

	

It can be noted that the finer the particle size of fractionated fly ashes, the 

higher the specific gravity and the Blaine fineness. In general, higher fineness fly ash 

will have higher specific gravity than the lower ones, in agreement with previous 

investigation (Hansson 1989). Density of fly ash from different plants varied from 

1.97 to 2.89 g/cm3  but normally ranges between about 2.2 to 2.7 g/cm3  (Lane and 

Best 1982). Work done by MCLaren and Digiolia (1990) reported that Class F fly 

ash had a mean specific gravity value of 2.40. The specific gravity of fractionated fly 

ashes vary from 2.28 for the coarsest fly ash to 2.54 for the finest fly ash of the dry 
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bottom fly ash and from 2.22 for the coarsest to 2.75 for the finest of the wet bottom 

fly ash. This result may be because the very fine particles are thick-walled, void free 

or, composed of more dense glasses and crystalline components (Hemming and 

Berry 1986). 

The Blaine fineness is the highest in the finest sample, 13F, which is 11241 

cm2/g. Figure 5.6 shows the relationship between the Blaine fineness and mean 

diameter of fly ash. The relationship can be expressed as: 

Blaine fineness = 15818*(mean diameter)-0.7074  with R2  = 0.9396 

It should be noted that this relationship is derived from analysis of both the 

dry and wet bottom fly ashes used in this study. The Blaine fineness increases 

inversely with the mean diameter. The result presented here also confiinis with 

those reported by Aitcin et al. (1986), which showed that if the average diameters, 

D50, of fly ash are smaller, the surface area of the fly ash will be larger than those 

with larger average diameters. The specific gravity of fractionated fly ashes increase 

with the decrease of the average particle size. 

Figure 5.6 Relationship between the Blaine Fineness and the 
Mean Diameter (D50) of Fly Ashes 
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5.4 Fly Ash Mortar with Ottawa Sand 

5.4.1 Dry and Weathered Fly Ash Mortar  

In this experiment, dry and weathered fly ashes were used as a replacement of 

cement of 0%, 15%, 25%, and 35% by weight of cementitious (fly ash+cement) 

materials. The mix proportion is shown in Table 4.1, series I. 

It is seen in Tables 5.4 and 5.5 that all of fly ash specimens show lower 

compressive strength than the control (no fly ash) strength at the same age. For the 

same quantity of fly ash used, the dry fly ash produces higher strength than the 

weathered fly ash. The higher the percentage of fly ash in the mix, the lower the 

compressive strength. 

Figures 5.7 and 5.8 show the effect of cement replacement using dry and 

weathered fly ashes on the strength of mortar. The rate of strength gain of fly ash 

mortar is slower than that of cement mortar at early ages (7 days or before). This 

effect always occurs when fly ash replaces cement on a one-to-one ratio by weight 

(David et al. 1937; Lane and Best 1984; ACI 226 1987; Courst 1991). The 

replacement of the dry fly ash 15% lowers the strength about 8% compared with the 

control strength at the age of 90 days while the weathered fly ash in the same amount 

lowers strength about 12%. The compressive strength with replacement of 35% with 

the thy fly ash varies from 59.2% at 1 day to 78.5% at 90 days of the control strength 

and varies from 35.4% at 1 day to 60.3% at 90 days for the weathered fly ash. The 

differences of the strength gain of the dry and weathered fly ash specimen may be 

due to the deleterious substances in the weathered fly ash. Since the weathered fly 

ash was in a pond of brackish water it probably contained organic impurities which 

were harmful to the strength of mortar. Another reason is that the weathered fly ash 

is coarser than the dry fly ash because the Blaine fineness of the weathered fly ash is 

2252 cm2/g which is lower than the dry fly ash (3380 cm2/g). 
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Table 5.4 Compressive Strength of Dry and Weathered Fly Ash Mortar 

Sample 
No. 

Compressive Strength (psi) 

1-day 3-day 7-day 14-day 28-day 56-day 90-day 

PC 1601 2357 2715 3210 3303 3728 4158 
PD15 1473 1954 2304 2637 3130 3615 3827 
PD25 1032 1690 2083 2218 2535 3304 3559 
PD35 948 1395 1842 1742 2003 2886 3263 
PW15 1008 1711 1939 2534 2866 3592 3689 
PW25 855 1383 1816 1953 2578 2900 3231 
PW35 566 1383 1694 1915 2328 2414 2508 
DD25 - 2153 2400 2775 3278 3487 3811 
DW25 178 1705 1785 2371 2584 3078 - 

Table 5.5 Percentage Compressive Strength of Dry and Weathered Fly Ash Mortar 

Sample Percentage of Compressive Strength (%) 
No. 

1-day 3-day 7-day 14-day 28-day 56-day 90-day 

PC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
PD15 92.0 82.9 84.9 82.1 94.7 97.0 92.0 
PD25 64.5 71.7 76.7 69.1 76.7 88.6 85.6 
PD35 59.2 59.2 67.8 54.3 60.6 77.4 78.5 
PW15 63.0 72.6 71.4 78.9 86.8 96.4 88.7 
PW25 53.4 58.7 66.9 60.8 78.1 77.8 77.7 
PW35 35.4 58.7 62.4 59.7 70.5 64.8 60.3 
DD25 - 91.3 88.4 86.4 93.2 93.5 91.7 
DW25 11.1 72.3 65.7 73.9 78.3 82.6 - 

Figure 5.7 Effect of Replacement the Dry Fly Ash 
on the Strength of Mortar 
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Figure 5.8 Effect of Replacement the Weathered Fly Ash 
on the Strength of Mortar 

5.4.2 Compressive Strength of DH Fly Ash Mortar 

DH fly ash from previous collection in 1983, was also used to replace cement. The 

percentage of fly ash in the mix was varied from 15% to 35% by weight of 

cementitious materials. The water/(cement+fly ash) ratio was kept constant at 

0.485. The mix proportion is shown in Table 4.1 series II. 

Tables 5.6 and 5.7 show the compressive strength and the percentage 

compressive strength of DH fly ash mortar relative to the control strength (sample 

A). Figure 5.9 shows that the compressive strengths of fly ash mortar are always 

lower than the control strength at the same age up to 90 days. With the replacement 

of 15% of the dry fly ash, the strength of mortar is 1074 psi at 1 day and 3554 psi at 

90 days or 77.7% and 97.2% respectively, of the control strength. The strengths of fly 

ash mortar are 89.7%, 76.8%, and 58.8% of the control strength with 15%, 25%, and 

35% cement replacement at 28 days. At the age of 90 days, the replacement 15% of 

fly ash has a higher compressive strength than the replacements of 25% and 35%.  
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Table 5.6 Compressive Strength of DH Fly Ash Mortar  

Sample 
No. 

Compressive Strength (psi) 

1-day 3-day 7-day 14-day 28-day 56-day 90-day 

A 1383 1843 2619 2974 3450 3551 3645 
B15 1074 1548 2106 2310 3095 3497 3554 
C25 1041 1351 1894 2086 2648 3201 3370 
D35 804 1084 1435 1648 2029 2548 2732 

Table 5.7 Percentage Compressive Strength of DH Fly Ash Mortar  

Sample 
no. 

Percentage Compressive Strength (%) 

1-day 3-day 7-day 14-day 28-day 56-day 90-day 

A 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
B15 77.7 84.0 80.4 77.7 89.7 98.5 97.2 
C25 75.3 73.3 72.3 70.1 76.8 90.1 92.5 
D35 58.1 58.8 54.8 55.4 58.8 71.8 74.9 

Figure 5.9 Effect of Replacement DH Fly Ash on the Strength of Mortar  
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The percentage of fly ash used as cement replacement dictates the strength of 

the composites, the more fly ash used, the lower the compressive strength will be. 

The extent of strength reduction of fly ash mortar from control mix is large at early 

age, up to 40% for the 35% replacement, and reduces to about 25% at the age of 90 

days. 

5.4.3 Compressive Strength of H Fly Ash Mortar 

H dry fly ash from previous collection was used as a replacement of cement. The 

percentage of fly ash in the mix was varied from 15% to 35% by weight of 

cementitious materials. The water/(cement +fly ash) ratio was kept constant at 0.50. 

The mix proportion is shown in Table 4.1, series III. 

Tables 5.8 and 5.9 show the compressive strength and the percentage 

compressive strength of H fly ash mortar comparing with the control strength 

(sample C). Figure 5.10 shows the effect of replacement H fly ash on the strength of 

mortar. 

The replacement of cement by H fly ash in mortar results in a lower 

compressive strength up to 180 days. The higher the percentage of fly ash in the mix, 

the lower is the compressive strength. The 28-day strength of FA15, FA25, and 

FA35 are 2613 psi, 2311 psi, and 1917 psi, or 79.9%, 70.7%, and 58.6%, respectively, 

compared with the control strength. At 180 days, the 15% replacement gives a 

strength almost the same as the control strength. At 1-day, the strength of FA35 is 

only 46.8% compared to the control strength and increases to about 75% at 180 days. 

The use of fly ash for 25% replacement lowers the compressive strength about 7% of 

the control strength at the age of 180 days. It is seen that the use of H fly ash up to 

25% gives a compressive strength of mortar nearly 95% of the control strength at 

180 days. 
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Table 5.8 Compressive Strength of H Fly Ash Mortar  

Sample 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

C 1682 2240 2687 3040 3269 3492 3604 3998 
FA15 1013 1978 2169 2384 2613 3173 3416 3876 
FA25 1101 1561 2084 2133 2311 2736 3010 3728 
FA35 788 1321 1680 1754 1917 2400 2536 2996 

Table 5.9 Percentage Compressive Strength of H Fly Ash Mortar  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

C 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
FA15 60.2 88.3 80.7 78.4 79.9 90.9 94.8 97.0 
FA25 65.5 69.7 77.6 70.2 70.7 78.3 83.5 93.2 
FA35 46.8 59.0 62.5 57.7 58.6 68.7 70.4 74.9 

Figure 5.10 Effect of Replacement H Fly Ash on the Strength of Mortar  
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5.4.4 H Weathered Fly Ash  

In this study, simulating H weathered fly ash was carried out in the laboratory by 

mixing H dry fly ash with water and soaking for about 2 months. The objective of this 

test is to study the difference between the use of dry and simulated weathered fly 

ashes on the strength of mortar. The use of the dry and weathered fly ashes was 

investigated and compared when 15% of fly ash was used as a cement replacement. 

The mix proportion of this program is shown in Table 4.1 series IV. 

From Tables 5.10 and 5.11, the results show that the use of fly ash lowers the 

compressive strength of mortar at early ages. The effect of cement replacement 

using H dry and weathered fly ashes on the strength of mortar is shown in Figure 

5.11. Replacing 15% of cement with H weathered fly ash lowers the compressive 

strength about 15% of the control strength at 28 days. After 7 days, the dry fly ash 

gives a slightly higher strength than the weathered fly ash. It is noted that the use of 

river sand in the mix results in higher strength than the use of Ottawa sand. At the 

age of 90 days, cement replacement 15% with the dry and weathered fly ashes give 

compressive strengths of 6208 psi and 5979 psi or 103.4% and 99.6%, respectively, of 

the control strength. The 2 months of simulated weathering of fly ash does not seem 

to have had any affect on the strength of the mortar. It can be concluded that both 

the dry and weathered fly ashes produce the same results when used as a 15% 

replacement of cement. 

Table 5.10 Compressive Strength of H Dry and Weathered Fly Ash Mortar 

Sample 
No. 

Compressive Strength (psi) 

1-day 3-day 7-day 14-day 28-day 56-day 90-day 

HC 
HD15 
HW15 

2303 
1739 
1755 

3128 
2798 
2878 

4260 
3677 
3463 

4959 
4380 
4156 

5231 
4799 
4479 

5597 
5456 
5119 

6002 
6208 
5979 
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Table 5.11 Percentage Compressive Strength of H Dry 
and Weathered Fly Ash Mortar 

Sample 
No. 

Percentage Compressive Strength (%) 

1-day 3-day 7-day 14-day 28-day 56-day 90-day 

HC 
HD15 
HW15 

100.0 
75.5 
76.2 

100.0 
89.5 
92.0 

100.0 
86.3 
81.3 

100.0 
88.3 
83.8 

100.0 
91.4 
85.3 

100.0 
95.7 
89.8 

100.0 
103.4 
99.6 

Figure 5.11 Effect of Replacement H Dry and Weathered 
Fly Ashes on the Strength of Mortar 

5.4.5 Dry and Weathered Fly Ash Mortar with Dispersing Agent 

In this experiment, 40 g/l of sodium hexametaphosphate (NaPO3) was mixed with 

water. The objective is to use NaPO3  to disperse all the particle of fly ash so that it 

can be mixed uniformly with mortar. The present of the dispersing agent made the 

fresh mortar more workable than for the specimen without dispersing agent. The 

mix proportion is shown in Table 4.1 series I. 

The compressive strength and percentage compressive strength of fly ash 
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mortar with dispersing agent are shown in Tables 5.4 and 5.5, respectively. The 

effect of replacement of fly ashes with and without dispersing agent on the strength 

of mortar are shown in Figure 5.12. 

Figure 5.12 Effect of Replacement Dry and Weathered Fly Ashes with and without 
Dispersing Agent on the Strength of Mortar 

At 1 day, the fly ash specimens with dispersing agent are very weak. For 

example, the compressive strength of DW25 (Weathered fly ash 25%) is only 178 psi 

or 11.1% of the control strength. After 3 days, the strength of DW25 is 1705 psi or a 

little higher than the 1 day control specimen (1601 psi). All the strengths of 

weathered fly ash mortar with dispersing agent are lower than the control strength at 

the same age. The use of the dry fly ash gives a better strength than that of the 

weathered fly ash. For DD25 (dry fly ash 25%) specimen, the compressive strength 

is about 85% to 90% of the control strength at the same age. For the 25% 

replacement of cement by the dry fly ash, the use of dispersing agent sample gives a 

little higher strength than the sample without dispersing agent at the age of 180 days. 

It is noted that fly ash mortar with dispersing agent is very weak at the age of 1 day. 
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This effect may be because the dispersing agent (Sodium hexametaphosphate) 

retards the hardening of mortar. 

5.5 Fly Ash with Kiln Dust Phase I 

The effect of fly ash and kiln dust on the strength of mortar without the presence of 

cement were investigated. The mix proportions for this experiment are shown in 

Table 4.1 series V. Dry and weathered fly ashes were mixed with kiln dust and river 

sand. The water/cementitious (fly ash+kiln dust) materials ratio was kept constant 

as at 0.55. 24 hours after casting, the specimens were removed from the molds and 

cured in air up to 56 days and after that transferred into saturated lime water. At the 

age of 1 day, all the specimens were very weak and disintegrated in water. Since fly 

ash-kiln dust specimens without any cement were so weak at 1 day, the specimens 

were tested at the age of 3, 7, 14, 28, 56, and 90 days. 

Compressive strengths of fly ash-kiln dust mortar are shown in Table 5.12. It 

is seen that the compressive strength of mortar from the dry fly ash is higher than 

from the weathered fly ash with the same mix proportion. At ages up to 56 days 

(curing in air), the maximum compressive strength occurs in KD40 (the dry fly ash 

40% and kiln dust 60%). This means that the combination of kiln dust and fly ash 

gives higher strength than for only kiln dust in the mix. This effect happens in both 

the dry and weathered fly ash mortar. 

After curing in air up to 56 days, the compressive strength tends to decrease 

(See Figure 5.13), possibly due to the lack of water for the chemical reaction process 

between fly ash and kiln dust. After the samples were put in saturated lime water, 

most of the samples increased their strengths except for samples with amounts of fly 

ash higher than 60%, i.e. KD60, KD80, and KW80. The strengths of KD60, KD80, 

KW60, and KW80 at 180 days are 383 psi, 147 psi, 300 psi and 54 psi, respectively. 

The decrease of strengths are due to very low strength so that they are deteriorated 
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in water. 

Figures 5.14 and 5.15 show the relationship between compressive strength 

and percentage of fly ash in the cementitious materials. It is seen that at 90 days, the 

higher the percentage of fly ash in the mix, the lower the compressive strength. 

Table 5.12 Compressive Strength of Fly Ash-Kiln Dust Mortar 

Sam. 
No. 

Compressive Strength (psi) 

3-day 7-day 14-day 28-day 56-day 90-day 

KD20 120 	340 589 759 830 	1014* 
KD40 87 	365 686 864 842 	892* 
KD60 64 	497 596 555 546 	383* 
KD80 65 	273 243 158 191 	147* 
KW20 120 	282 410 460 305 	663* 
KW40 63 	175 350 404 276 	481* 
KW60 38 	115 258 194 190 	300* 
KW80 28 	95 155 88 61 	54* 

* These specimens were cured in air up to 56 days, after that transferred into 
saturated lime water. 

Figure 5.13 Effect of the Dry and Weathered Fly Ash-Kiln Dust 
on the Strength of Mortar 
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Figure 5.14 Relationship between Compressive Strength and Percentage 
of the Dry Fly Ash in Cementitious Materials 

Figure 5.15 Relationship between Compressive Strength and Percentage 
of the Weathered Fly Ash in Cementitious Materials 



76  

5.6 Fly Ash with Kiln Dust Phase II 

In this experiment, the weathered fly ash was mixed with kiln dust to form fly ash-kiln 

dust paste. The mix proportion is shown in Table 4.1 series VI. The 

water/cementitious (fly ash+kiln dust) materials ratio was kept as constant at 0.275. 

The objective of this experiment is to study the suggested use of weathered fly ash-

kiln dust as a landfill material. 

24 hours after casting, all specimens were removed from the molds and 

covered with a plastic sheet to reduce moisture loss. Since the specimens were very 

weak and disintegrated in water at early age, all samples were covered with plastic 

sheet until they were tested. 

5.6.1 Compressive Strength of Fly Ash-Kiln Dust Paste 

Table 5.13 shows the compressive strength of fly ash-kiln dust paste. The 

relationship between compressive strength of the weathered fly ash-kiln dust versus 

age is shown in Figure 5.16. As the age increases, the compressive strength of all 

samples also increases, except samples WK70, WK80, and WK90 which strengths 

drop after 90 days (See Figure 5.16). At early ages (1 to 3 days), it is seen that the 

specimens with higher percentage of kiln dust in the mix give higher compressive 

strength than the specimens with lower percentage of kiln dust. The compressive 

strength of WK10 (fly ash 10% and kiln dust 90%) is the highest up to the age of 7 

days. After that, the strength of WK30 (fly ash 30% and kiln dust 70) is the highest. 

The strength of WK30 varies from 71 psi at 1 day to 4710 psi at 180 days. The 

strength of WK30 at the age of 180 days is more than 66 times of the 1 day strength. 

Figure 5.17 shows that the optimum of fly ash in the mix is about 50% for the 

age up to 14 days but the optimum fly ash content shifts to about 30% when the age 

increases. For samples with high fly ash content, for examples, WK70, WK80, and 

WK90, strengths are very low and tend to decrease after 90 days. It is also observed 

that the compressive strength of WK90 increases from 33 psi at 1 day to 133 psi at 
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180 days or an increase of about 4 times. 

5.6.2 Weathered Fly Ash-Kiln Dust Paste Cube in Water 

After testing for compressive strength of fly ash-kiln dust paste at 180 days, the 

samples were immersed in water for 1 month. Specimens with fly ash up to 60% did 

not disintegrate in water, but the specimens with fly ash more than 60% disintegrated 

in water (See Figure 5.18). Specimen WK90 completely disintegrated in water while 

WK80 and WK70 only partially disintegrated. For this reason, the mix proportion of 

fly ash-kiln dust paste should contain kiln dust not less than 30% of total 

cementitious materials. It is noted that the strength of fly ash-kiln dust paste up to 3-

day is very weak and will disintegrated in water. 

Table 5.13 Compressive Strength of the Weathered Fly Ash-Kiln Dust Paste 

Sam. 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

WK10 129 273 538 843 1717 2009 2648 3400 
WK20 92 188 515 971 2316 2785 3254 4526 
WK30 71 142 400 1122 3023 3359 3694 4710 
WK40 60 101 451 1562 2964 3038 3111 3873 
WK50 47 84 399 1634 2460 2485 2478 3585 
WK60 46 68 490 1266 1607 1683 2190 2367 
WK70 38 53 510 858 1079 1386 1462 1077 
WK80 34 42 289 351 510 605 601 549 
WK90 33 43 57 69 77 144 179 133 

5.6.3 Density of Fly Ash-Kiln Dust Paste 

The density of harden fly ash-kiln dust paste was observed to reduce with increased 

fly ash content (See Table 5.14). The higher the percentage of fly ash in the mix, the 

lower is the density. Since all specimens were not cured in water but covered with a 

plastic sheet, the water in the mix evaporates and therefore reduces the weight. The 

highest density is for WK10 which is 124 lb/ft3  at 1 day and 115 lb/ft3  at 180 days. 
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The density of fly ash-kiln dust paste is lower than that of mortar (135 lb/ft3) and 

concrete (145 lb/ft3). The lowest density is found in WK90 which is 108 lb/ft3  at 1 

day and 90 lb/ft3  at 180 days. 

Figure 5.16 Relationship between Compressive Strength of the 
Weathered Fly Ash-Kiln Dust and Age 

Figure 5.17 Relationship between Compressive Strength of the Weathered 
Fly Ash-Kiln Dust and Percentage of Fly Ash in the Mix 
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Figure 5.18 Weathered Fly Ash-Kiln Dust Paste After Tested 
and Immersed in Water for 1 Month 

Table 5.14 Density of the Weathered Fly Ash-Kiln Dust Paste  

Sam. Density (lb/ft3) 

No. 1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

WK10 124 123 120 120 120 117 117 115 
WK20 122 122 119 119 118 117 117 115 
WK30 122 120 118 118 117 117 114 114 
WK40 120 120 117 117 117 115 112 112 
WK50 117 117 115 115 114 113 113 107 
WK60 117 115 114 112 110 110 108 104 
WK70 113 112 110 107 105 100 100 97 
WK80 112 110 107 107 102 95 92 90 
WK90 108 108 107 106 102 95 92 90 

5.7 Fly Ash with Kiln Dust Phase III 

In this experiment, dry and weathered fly ashes were mixed with cement, kiln dust, 

river sand, and water. Sand, water, cementitious (cement + fly ash + kiln dust) 

materials, and water were kept as constants, the percentage of fly ash was varied 

from 20% to 80% by weight of cementitious materials. Setting times of cement and  
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combination of cement-fly ash-kiln dust paste were tested by both Vicat and 

Gillmore methods. The mix proportions are shown in Table 4.1 series VII. Tables 

5.15 and 5.16 show the compressive strength and percentage compressive strength of 

mortar with partial replacement of fly ash and kiln dust. 

Table 5.15 Compressive Strength of Cement-Fly Ash-Kiln Dust Mortar  

Sam. Compressive Strength (psi) 

No. 1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

EKO 2177 4048 4748 5500 6280 7001 7448 8034 

AK000 213 342 447 551 668 888 860 597 
AKD20 186 304 473 917 1788 2540 2708 2875 
AKD40 168 383 938 1590 2290 2907 3552 4196 
AKD60 138 569 923 1463 2027 2406 2836 3265 
AKD80 180 450 595 713 1035 1466 1548 1768 

BK000 559 1042 1288 1858 2942 2988 3200 3408 
BKD20 384 1547 2043 2521 3264 3721 4477 5888 
BKD40 391 1504 1788 2371 3178 3834 4970 6110 
BKD60 468 1060 1449 1768 2571 3022 4179 5461 

CK000 1605 3090 3540 3890 4245 5058 5519 5981 
CKD20 1553 2751 3327 3628 4038 5341 6080 6834 
CKD40 1204 2295 2818 3610 4415 4975 6087 7078 

DK000 1977 3936 4474 5272 5726 6123 6430 7145 
DKD20 1700 3655 4366 4852 5583 6127 6642 7666 

AKW20 181 336 501 964 1797 2358 2677 2995 
AKW40 93 332 736 1233 2015 2469 2715 3447 
AKW60 51 416 690 1041 1683 2106 2257 2467 
AKW80 48 237 370 421 640 915 1010 1508 

BKW20 299 1546 2099 2139 2922 3579 4219 5467 
BKW40 233 1328 1597 1920 2769 3345 4103 5153 
BKW60 196 853 1083 1493 2141 2290 3302 4400 

CKW20 1158 2338 2861 3205 3548 4688 5439 6182 
CKW40 848 1754 2043 2628 3213 3947 4926 5473 

DKW20 1439 3180 3699 4158 4599 5432 6432 7163 
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Table 5.16 Percentage Compressive Strength of Cement-Fly Ash-Kiln Dust Mortar 

Sam. Percentage Compressive Strength (%) 

No. 1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

EKO 100 100 100 100 100 100 100 100 

AK000 9.8 8.4 9.4 10.0 10.6 12.7 11.5 7.4 
AKD20 8.5 7.5 10.0 16.7 28.5 36.3 36.4 35.8 
AKD40 7.7 9.5 19.8 28.9 36.5 41.5 47.7 52.2 
AKD60 6.3 14.1 19.4 26.6 32.3 34.4 38.1 40.6 
AKD80 8.3 11.1 12.5 13.0 16.5 20.9 20.8 22.0 

BK000 25.7 25.7 27.1 33.8 46.8 42.7 43.0 42.4 
BKD20 17.6 38.2 43.0 45.8 52.0 53.1 60.1 73.3 
BKD40 18.0 37.2 37.7 43.1 50.6 54.8 66.7 76.1 
BKD60 21.5 26.2 30.5 32.1 40.9 43.2 56.1 68.0 

CK000 73.7 76.3 74.6 70.7 67.6 72.2 74.1 74.4 
CKD20 71.3 68.0 70.1 66.0 64.3 76.3 81.6 85.1 
CKD40 55.3 56.7 59.4 65.6 70.3 71.1 81.7 88.1 

DK000 90.8 97.2 94.2 95.9 91.2 87.5 86.3 88.9 
DKD20 78.1 90.3 92.0 88.2 88.9 87.5 89.2 95.4 

AKW20 8.3 8.3 10.6 17.5 28.6 33.7 35.9 37.3 
AKW40 4.3 8.2 15.5 22.4 32.1 35.3 36.5 42.9 
AKW60 2.3 10.3 14.5 18.9 26.8 30.1 30.3 30.7 
AKW80 2.2 5.9 7.8 7.7 10.2 13.1 13.6 18.8 

BKW20 13.7 38.2 44.2 38.9 46.5 51.1 56.6 68.0 
BKW40 10.7 32.8 33.6 34.9 44.1 47.8 55.1 64.1 
BKW60 9.0 21.1 22.8 27.1 34.1 32.7 44.3 54.8 

CKW20 53.2 57.8 60.3 58.3 56.5 67.0 73.0 76.9 
CKW40 39.0 43.3 43.0 47.8 51.2 56.4 66.1 68.1 

DKW20 66.1 78.6 77.9 75.6 73.2 77.6 86.4 89.2 

Sample EKO is the control sample, without any kiln dust or fly ash. Series 

AK, BK, CK, and DK stand for the cement-fly ash-kiln dust mortar with a cement 

constant in the cementitious materials of 20%, 40%, 60%, and 80%, respectively. 

The numbers in each series indicate the percentage of fly ash in the mix. Letter D or 

W stands for the use of the dry or weathered fly ash. 
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5.7.1 Compressive Strength of Cement-Fly Ash-Kiln Dust Mortar with Constant 
Cement Content 

Cement 20% of Cementitious Materials 

In this test, the weight of cement is kept constant at 20% of the total cementitious 

materials. The results are shown in Figure 5.19. It is seen that most of the mortar 

strength increases with age, except for AK000 (kiln dust 80%, no fly ash) which 

strength drops after 90 days. This may be due to the unsoundness of the specimen in 

water. It is also noted that the compressive strength of AK000 at 180 days is only 

597 psi. At 1 day, the compressive strength of AKD40 (the dry fly ash 40% and kiln 

dust 40%) is about 7.7% and increases to 52.2% at 180 days relative to EKO. 

Figure 5.20 displays the effect of the weathered fly ash-kiln dust on the 

strength of mortar with cement content constant at 20%. The percentage 

compressive strength of AKW40 (the weathered fly ash 40% and kiln dust 40%) 

increases from 4.3% at 1 day to 42.9% at 180 days. With the replacement of fly ash 

and kiln dust up to 80% in AKD and AKW series, the compressive strength of fly 

ash-kiln dust mortar is about 10%-20% of the control strength at ages up to 7 days. 

As the age increases, a suitable combination of fly ash and kiln dust increases the 

compressive strength. For example, the use of 40% of the dry fly ash, 40% kiln dust, 

and 20% of cement (AKD40), gives a compressive strength of 4196 psi or 52.2% of 

the control strength at 180 days. For the same mix proportion, the dry fly ash mortar 

gives higher compressive strength than the weathered fly ash mortar. 

Cement 40% of Cementitious Materials 

Figure 5.21 shows that at the age of 180 days, the strength of BK000 (kiln dust 60%, 

no fly ash) is much lower than the other specimens with the same cement content. 

Specimen with a replacement of the dry fly ash or kiln dust are always lower than the 

control strength. The compressive strength of BKD40 increases from 18% at 1 day 

to 76.1% at 180 days compared with the control strength. It is noted that at the age 
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of 180 days, the highest compressive strength in this series is for BKD40 which is 

6110 psi, or 76.1% of the control strength. 

Figure 5.22 shows that the strength of BKW20 (kiln dust 40%, the weathered 

fly ash 20%) is a little higher than BKW40 (kiln dust 20%, the weathered fly ash 

40%). At the age of 180 days, the compressive strength of BKW20 is 5467 psi and of 

BKW40 is 5153 psi. At the same ages, the samples from series of BKD and BKW 

give higher strengths than the samples from series AKD and AKW. This is due to 

the higher percentage of cement in series BKD and BKW (40% of cement) than in 

series AKD and AKW (20% of cement). The highest strength in BKD and BKW 

series is BKD40 which is 6110 psi while in AKD and AKW series is AKD40 which is 

4196 psi. It is noted that the use of the dry fly ash gives higher strength than that of 

the weathered fly ash when using the same mix proportion. 

Cement 60% of Cementitious Materials  

Figure 5.23 shows the effect of fly ash-kiln dust on the strength of mortar with 

cement content constant at 60%. At the early ages (1 to 14 days), the higher the 

percentage of kiln dust in the mix, the higher is the compressive strength. After 90 

days, the strength of CKD40 (no kiln dust, the dry fly ash 40%) is higher than CKD00 

and CKD20. This indicates that kiln dust which has high CaO content has an 

important role in the production of higher strength at early ages than fly ash. When 

the ages increase, the pozzolanic reaction of fly ash becomes dominant and produces 

higher compressive strengths than for the mixes with higher content of kiln dust. 

The compressive strength of CKD4O varies from 1204 psi at 1 day to 7078 psi 

at 180 days or 55.3% to 88.1% of the control strength. In these series, the dry fly ash 

also gives higher compressive strength than the weathered fly ash. 

Cement 80% of Cementitious Materials  

In this series, the weight of cement is kept constant at 80% of the total cementitious 

materials. The effect of fly ash-kiln dust on the strength of mortar with cement 
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constant at 80% is shown in Figure 5.24. At the early ages, the specimen DKD000 

(cement 80% and kiln dust 20%) gives the highest strength. After 56 days, sample 

DKD20 (cement 80% and the dry fly ash 20%) gives the highest strength. This effect 

is similar to BKD series. Again, the compressive strength of the weathered fly ash 

samples are lower than the dry fly ash samples when using the same mix proportion. 

The compressive strengths of DKD20, DKD00, and DKW20 at the age of 180 days 

are 7666 psi, 7145 psi, and 7163 psi, respectively or 95.4%, 88.9%, and 89.2% of the 

control strength. 

Figure 5.19 Effect of the Dry Fly Ash-Kiln Dust on the Strength of 
Mortar with Cement Constant at 20% 
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Figure 5.20 Effect of the Weathered Fly Ash-Kiln Dust on the Strength of 
Mortar with Cement Constant at 20% 

Figure 5.21 Effect of the Dry Fly Ash-Kiln Dust on the Strength of 
Mortar with Cement Constant at 40% 



86  

Figure 5.22 Effect of the Weathered Fly Ash-Kiln Dust on the Strength of 
Mortar with Cement Constant at 40% 

Figure 5.23 Effect of Fly Ash-Kiln Dust on the Strength of 
Mortar with Cement Constant at 60% 
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Figure 5.24 Effect of Fly  Ash-Kiln Dust on the Strength of 
Mortar with Cement Constant at 80% 

5.7.2 Optimum Mix of Fly Ash-Kiln Dust Mortar Phase III 

Figures 5.25 and 5.26 show the relationship between percentage of fly ash (the dry 

and weathered) in cementitious materials and compressive strength of cement-fly 

ash-kiln dust mortar at the age of 180 days. It is seen that at low cement content, 

20% to 40% by weight of cementitious materials, the use of fly ash or kiln dust alone 

does not give the highest strength. With the cement content constant, a suitable 

combination of fly ash and kiln dust are required to get the highest strength. For 

20% cement, the optimum of fly ash to produce the highest strength is about 40% 

(fly ash 40% and kiln dust 40%). For 20% cement in cementitious materials, the 

optimum mix is fly ash 40% and kiln dust 40% for both the dry and weathered fly 

ashes. With 40% cement in cementitious materials, the optimum mix is fly ash 40% 

and kiln dust 20% for both the dry and weathered fly ashes. With 60% cement in 

cementitious materials, the optimum mix is fly ash 40% and no kiln dust for the dry 

fly ash and for the weathered fly ash, the optimum is fly ash 20% and kiln dust 20%. 
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For 80% cement in cementitious materials, the optimum mix is fly ash 20% and no 

kiln dust for both the dry and weathered fly ashes. 

Figure 5.25 Relationship between Percentage of the Dry Fly Ash in 
Cementitious Materials and Compressive Strength of 

Fly Ash-Kiln Dust Mortar at the Age of 180-Day 

Figure 5.26 Relationship between Percentage of the Weathered Fly Ash 
in Cementitious Materials and Compressive Strength of 

Fly Ash-Kiln Dust Mortar at the Age of 180-Day 
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5.7.3 The Maximum Strength of Fly Ash-Kiln Dust Mortar in Each Series 

Tables 5.17 and 5.18 show the maximum compressive strength and the maximum 

percentage compressive strength in each series. It is noted that at the age of 180 

days, the maximum compressive strength of mortar with the cement content of 20%, 

40%, 60%, and 80% are 52.2%, 76.1%, 85.1%, and 91.2% of the control strength, 

respectively. If the compressive strength of the control mortar at 28 days is used as 

the reference, the percentage of control's compressive strength of AKD40, BKD40, 

CKD20, and DKD20 at 180 days are 66.8%, 97.3%, 108.8%, and 122.1%, 

respectively (see Table 5.19). It is seen that the compressive strength is higher with 

the higher percentage of cement at all ages. With the lower cement content (series 

AKD and AKW), a high percentage of kiln dust is needed for higher compressive 

strength. When the cement content increase, the content of kiln dust should be 

reduced to get higher strength. 

Table 5.17 Maximum Compressive Strength of Fly Ash-Kiln Dust 
Mortar in Each Series 

Sam. 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

EKO 2177 4048 4748 5500 6280 7001 7448 8034 
AKD40 168 383 938 1590 2290 2907 3552 4196 
BKD40 391 1504 1788 2371 3178 3834 4970 6110 
CKD20 1553 2751 3327 3628 4038 5341 6080 6834 
DKD20 1700 3655 4366 4852 5583 6127 6642 7666 

Table 5.18 Percentage Maximum Compressive Strength of 
Fly Ash-Kiln Dust Mortar in Each Series 

Sam. 
No. 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

EKO 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
AKD40 7.7 9.5 19.8 28.9 36.5 41.5 47.7 52.2 
BKD40 18.0 37.2 37.7 43.1 50.6 54.8 66.7 76.1 
CKD20 71.3 68.0 70.1 66.0 64.3 76.3 81.6 85.1 
DKD20 78.1 90.3 92.0 88.2 88.9 87.5 89.2 95.4 
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Table 5.19 Percentage Compressive Strength of Fly Ash Kiln Dust Mortar 
in Each Series by Keeping 28 Days Control Strength as 100 % 

Sam. 
No. 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

EKO 34.7 64.5 75.6 87.6 100.0 111.5 118.6 127.9 
AKD40 2.7 6.1 14.9 25.3 36.5 46.3 56.6 66.8 
BKD40 6.2 23.9 28.5 37.8 50.6 61.1 79.1 97.3 
CKD20 24.7 43.8 53.0 57.8 64.3 85.0 96.8 108.8 
DKD20 27.1 58.2 69.5 77.3 88.9 97.6 105.8 122.1 

5.7.4 Setting Time of Cement-Fly Ash-Kiln Dust Paste  

From Table 5.20, it is seen that the water-cement ratio for normal consistency varies 

from 28% in cement paste to 155.3% in AKD80 (cement 20%, dry fly ash 80%). If 

considers in terms of water-cementitious ratio, this ratio is almost constant between 

28% to 31%. 

Table 5.20 Setting Time of Cement-Fly Ash-Kiln Dust Paste 

Sam. 
No. 

Normal Consistency 
(%) 

Initial Setting Final Setting 

Vicat 
h:min 

Gillmore 
h:min 

Vicat 
h:min 

Gillmore 
h:min W/C W/(C+FA+KD) 

AK000 153.8 30.7 3:15 3:15 8:30 8:00 
AKD20 151.0 30.2 3:50 4:00 8:45 8:20 
AKD40 149.2 29.8 4:10 4:25 9:15 8:30 
AKD60 151.5 30.3 4:30 4:45 9:40 9:10 
AKD80 155.3 31.0 4:45 4:50 10:15 9:25 

BK000 77.6 31.0 4:00 4:05 7:20 7:20 
BKD20 76.2 30.5 4:10 4:10 7:40 7:30 
BKD40 76.1 30.4 4:20 4:25 8:00 7:50 
BKD60 75.3 30.1 4:25 4:25 8:05 8:05 

CK000 49.7 29.8 3:25 3:35 6:25 6:35 
CKD20 47.1 28.3 3:30 3:34 6:40 6:40 
CKD40 48.7 29.2 3:35 3:55 7:55 8:00 

DK000 35.5 28.4 2:30 2:50 5:50 6:00 
DKD20 35.0 28.0 2:35 3:00 6:00 6:05 

CEM 28.0 28.0 2:20 2:40 5:30 5:30 
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The shortest setting times occurs in plain cement paste. The initial and final 

setting times measured by Vicat needle are 2 h 20 min and 5 h 30 min, respectively. 

Using Gillmore needles, the initial and final setting times are 2 h 40 min and 5 h 30 

min, respectively. The longest setting time sample is occurred in AKD80 which the 

initial setting time, final setting time are 4 h 45 min, 10 h 15 min, respectively by 

Vicat needle and 4 h 50 min, 9 h 25 min, respectively by Gillmore needles. Note that 

ASTM C-150 (1981) specified the initial setting time of cement paste by Vicat needle 

should not be less than 45 min and not more than 8 h for the final setting time and 

for the Gillmore test, the initial set not less than 60 min and not more than 10 h for 

the final set. But in 1990, the Vicat method only specified the initial setting time 

should be between 45 min and 375 min, no final setting time was required (ASTM C-

150 1990). 

With cement content constant, the paste with higher percentage of kiln dust 

had a shorter setting times than the paste with less kiln dust. This is because that kiln 

dust has some cementitious materials thus accelerates the setting times. However, 

the cementing property of kiln dust is not as strong as cement but is stronger at early 

ages than fly ash. 

5.8 Fly Ash as a Replacement 

Dry and weathered fly ashes were used as a replacement for cement. Keeping the 

water, river sand, and cementitious (cement+fly ash) materials constants, cement 

was replaced by fly ash. The replacement of fly ash (dry or weathered) was varied 

from 10% to 40% by weight of cementitious materials. The mix proportions for this 

program are shown in Table 4.1 series VIII. Sample JC is the control sample. RD 

and RW are the samples with replacement of the dry and weathered fly ashes, 

respectively. Tables 5.21 and 5.22 show the compressive and the percentage 

compressive strength of fly ash mortar. It is seen that the use of fly ash as a 
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replacement of cement reduces the compressive strength of mortar at early ages. 

This is a disadvantage when fly ash is replaced cement on a one-to-one ratio by 

weight (Lane and Best 1982; ACI 226 1987). Usually, the weathered fly ash lowers 

the compressive strength more than the thy fly ash for the same amount of fly ash. 

After 180 days, the replacement of the dry or weathered fly ash up to 30% gives 

compressive strengths at the same level of the control strength. 

Table 5.21 Compressive Strength of the Dry and Weathered Fly Ash Mortar as a 
Replacement, as a Partial Addition and Replacement of Sand, and as an Additive 

Sam. 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

JC 2144 4303 5252 6109 6884 7320 7448 7918 

RD10 1845 4146 5004 5576 6170 6747 7214 7943 
RD20 1700 3655 4366 4852 5583 6127 6642 7666 
RD30 1375 3288 3932 4839 5668 5980 6805 8178 
RD40 1204 2295 2818 3610 4415 4975 6087 7078 
RW10 1826 3652 4378 4987 5819 6051 6844 7761 
RW20 1439 3180 3699 4158 4599 5432 6432 7680 
RW30 1029 2850 2969 3737 4340 5045 6213 7599 
RW40 848 1754 2043 2628 3213 3947 4926 5473 

ED10 2358 4948 5830 7017 7540 8099 9295 10143 
ED20 2444 4306 5767 6434 7228 8138 9649 10275 
ED30 2508 4776 5351 6109 6953 7527 8488 9593 
ED40 2487 4631 5325 5788 6606 7322 7795 8825 
EW10 2466 4948 6101 7005 7316 7928 9505 10563 
EW20 2444 4862 5950 6995 7341 8655 9375 10618 
EW30 2336 4948 5698 6666 7314 8121 9712 10949 
EW40 2140 4905 5690 6386 7214 7841 8469 10084 

AD10 2386 4389 5434 6313 7082 7584 7878 9342 
AD20 2444 4286 5776 6845 7283 8134 8670 9768 
AD30 2487 4359 5053 6195 7173 8051 8373 9331 
AD40 2027 4541 5164 6244 6807 8009 8445 9120 
AW10 2318 4469 5297 6255 6902 7675 7870 8819 
AW20 2444 4342 5302 6410 7020 8055 8504 9463 
AW30 2401 4790 5286 6104 6877 8600 9544 10554 
AW40 2187 4613 5348 6291 6895 8579 9481 10158 
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Table 5.22 Percentage Compressive Strength of the Dry and Weathered Fly Ash 
Mortar as a Replacement, as a Partial Addition and 

Replacement of Sand, and as an Additive 

Sam. 
No. 

Percentage Compressive Strength 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

JC 100 100 100 100 100 100 100 100 

RD10 86 96 95 91 90 92 97 100 
RD20 79 85 83 79 81 84 89 97 
RD30 64 76 75 79 82 82 91 103 
RD40 56 53 54 59 64 68 82 89 
RW10 85 85 83 82 85 83 92 98 
RW20 67 74 70 68 67 74 86 97 
RW30 48 66 57 61 63 69 83 96 
RW40 40 41 39 43 47 54 66 69 

ED10 110 115 111 115 110 111 125 128 
ED20 114 100 110 105 105 111 130 130 
ED30 117 111 102 100 101 103 114 121 
ED40 116 108 101 95 96 100 105 111 
EW10 115 115 116 115 106 108 128 133 
EW20 114 113 113 114 107 118 126 134 
EW30 109 115 108 109 106 111 130 138 
EW40 100 114 108 105 105 107 114 127 

AD10 111 102 103 103 103 104 106 118 
AD20 114 100 110 112 106 111 116 123 
AD30 116 101 96 101 104 110 112 118 
AD40 95 106 98 102 99 109 113 115 
AW10 108 104 101 102 100 105 106 111 
AW20 114 101 101 105 102 110 114 120 
AW30 112 111 101 100 100 117 128 133 
AW40 102 107 102 103 100 117 127 128 

5.8.1 Replacement of Cement with the Dry Fly Ash  

The effect of replacement of the dry fly ash on the strength of mortar is shown in 

Figure 5.27. It is seen that RD40 has the lowest strength at all ages. Its strength 

varies from 1204 psi at 1 day to 7078 psi at 180 days or 56% to 89%, relative to the 

control strength. With the use of a high volume of fly ash as a replacement, i.e. 40%, 

the early strengths (1 day to 14 days) are about 50% to 60% and gradually increase 

with ages. 

Figure 5.28 is the relationship between compressive strength of replacement 
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the dry fly ash mortar and the dry fly ash/cement ratio. At the early ages, the 

compressive strengths of fly ash mortar decrease with the increase of the dry fly 

ash/cement ratio. The curves in Figure 5.28 do not show any optimum of fly ash 

content. After 28 days, the pozzolanic reaction of fly ash contributes strength to the 

sample and the optimum fly ash usage mix can be seen clearly after 90 days, 

somewhere between 20 to 30% by weight of cementitious materials. 

5.8.2 Replacement of Cement with the Weathered Fly Ash 

Figure 5.29 shows that the effect of the weathered fly ash on the strength of mortar is 

almost the same as the dry fly ash except that the weathered fly ash gives lower 

compressive strength than the dry fly ash when using the same amount of 

replacement. With 40% replacement of the weathered fly ash by weight of 

cementitious materials gives 40% at 1 day and 69% at 180 days of the control 

strength. All of the weathered fly ash mortars give lower compressive strength than 

the control mortar at all ages up to 180 days. In Figure 5.30, the compressive 

strength of the weathered fly ash mortar and the weathered fly ash/cement ratio 

shows no optimum of fly ash for use in cement. 

The results on the compressive strength of this study do not agree with those 

reported by Yasuda et al. (1991). Their results showed that the strength of mortar or 

concrete contained wet-stored fly ash increased. They explained that weathered fly 

ash may raise the adhesion capability between fly ash and cement particles due to 

slight roughness of fly ash particle surface, and by the increase in activation of fly ash 

particles. Finally, they concluded that fly ash dumped at an ash disposal area for 7 

years had not deteriorated. This may be true if one considers the chemical 

composition of the dry and weathered fly ashes presented in Table 5.1. However, 

this study found that apparent particle size distribution tends to change with damped 

storage condition. 
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Figure 5.27 Effect of Replacement of the Dry Fly Ash on the Strength of Mortar 

Figure 5.28 Relationship between Compressive Strength of Replacement the Dry 
Fly Ash Mortar and the Dry Fly Ash/Cement Ratio 
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Figure 5.29 Effect of Replacement of the Weathered Fly Ash 
on the Strength of Mortar 

Figure 5.30 Relationship between Compressive Strength of Replacement the 
Weathered Fly Ash Mortar and the Weathered Fly Ash/Cement Ratio 
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Many investigators have concluded that fly ashes with higher percentage of 

finer particles gave higher strengths (Cerkanowicz et al. 1991; Ukita, Shigematsu 

1989; Giergiczny and Werynska 1989; Slanicka 1991). The result here confirms this 

behavior since the Blaine fineness of the dry fly ash is higher than the weathered fly 

ash. Another reson may be due to the impurities of the weathered fly ash. An 

investigation was carried out by soaking both the thy and weathered fly ashes in tap 

water. The results indicated that the soaked water from the weathered fly ash is 

much darker than the one from the dry fly ash. It is believed that the weathered fly 

ash was contaminated by things, like clay, dust, and organic materials, while sitting in 

the storage pond with brackish water from the river. According to Kiattikomol and 

Jaturapitakkul (1989) the compressive strength of concrete can be reduced 

approximately by 15% with the presence of 3% of clay by weight of sand. Another 

reason may be that the crystalline phase in the weathered fly ash does not dissolve to 

a glassy phase as expected during the ponding periods. These attributed factors may 

be the cause of the lower compressive strength of the weathered fly ash mortar. 

5.8.3 Setting Time of Fly Ash-Cement Paste When Use as a Replacement 

Table 5.23 records the results of setting times of cement-fly ash paste. Sample RD  

and RW have the same proportion of cement and fly ash as shown in Table 4.1 

Series VIII except that no sand was used. The initial setting times by Vicat or 

Gillmore methods are in close agreement. It seems that the setting time tested by 

the Gillmore needles is a slightly longer than the Vicat needle. Consider in terms of 

normal consistency, w/c, the normal consistency is higher with the higher content of 

fly ash. If considers in term of water to cementitious (cement+fly ash), it is nearly 

constant at 28% which is the same value for the cement paste. 

The results show that the presence of fly ash in the mix increases the setting 

times, the higher the percentage of fly ash, the longer the setting times. Results 
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reported by Meinlinger (1982), Ravina (1984), and Costa and Massazza (1983) also 

showed an increase in setting times with the increase of fly ash in cement. This is 

because Class F fly ash possesses very little cementitious material and the presence 

of fly ash will dilute the concentration of the cement while other factors such as 

water, temperature, humidity, etc., remain constant. 

The initial and final setting times of cement paste by Vicat needle are 2 h 20 

min and 5 h 30 min, respectively. With the Gillmore needles test, the initial and final 

setting times of cement paste are 2 h 40 min and 5 h 30 min, respectively. Both 

methods seem to agree closely with each other. The use of high percentage of fly ash 

results in longer setting time. RW20 and RW40 had initial setting time of 4 h 15 min 

and 5 h 35 min, respectively, by Vicat needle. These are much longer than the 

setting time of the cement paste. It should also be noted that the final setting time of 

RW40 is longer than 9 h which is 3 h 30 min longer than the cement paste. For the 

same amount of fly ash in the paste, the weathered fly ash prolongs setting time 

further than the dry fly ash. The initial and final setting times of RD40 are 3 h 35 

min and 7 h 55 min by Vicat needle while for RW40 are 5 h 35 min and >9 h, 

respectively. This means that the weathered fly ash is less reactive than the dry fly 

ash. 

ASTM C-150 (1990) specifies that the initial setting time of standard portland 

cement type I by Vicat test and Gillmore test be not less than 45 min and 60 min, 

respectively. For the final setting time, it must not be more than 10 h by Gillmore 

test. It is crucial that the mix proportion be carefully selected when introducing fly 

ash in the cement paste since setting time may be the major factor. With high 

volume use of fly ash in the cement paste, the setting time may be longer than those 

specified by the ASTM C-150. 
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Table 5.23 Setting Time of Cement-Fly Ash Paste 

Sam. 
No. 

Normal Consistency 
(%) 

Initial Setting Final Setting 

Vicat 
h:min 

Gillmore 
h:min 

Vicat 
h:min 

Gillmore 
h:min W/C W/(C+FA) 

CEM 28:00 28:00 2:20 2:40 5:30 5:30 

RD10 30:76 27:69 2:25 2:30 5:55 5:55 
RD20 35:00 28:00 2:35 3:00 6:00 6:05 
RD40 48:71 29:23 3:35 3:55 7:55 8:00 

RW10 31:79 28:61 3:10 3:35 6:20 6:20 
RW20 36:15 28:92 4:15 4:30 6:50 7:00 
RW40 49:23 29:53 5:35 6:00 >9:00 >9:00 

5.9 Fly Ash as a Partial Addition and Replacement of Sand 

In this experiment, 10 percent of the dry or weathered fly ash by weight of cement 

was used as a replacement of sand. Additional quantity of fly ash was added in the 

mix as an addition. The addition of fly ash was varied from 10% to 40% by weight of 

cement. The mix proportion is shown in Table 4.1 series IX. The effect of fly ash as 

a partial addition and replacement of sand on the strength of mortar is shown in Fig 

5.31. It is seen that most samples in this test give higher compressive strength than 

the control strength. The exception was ED40 which at 14 days and 28 days had 

strengths of 95% and 96%, respectively, of the control strength. 

5.9.1 Dry Fly Ash as a Partial Addition and Replacement of Sand 

Using fly ash as a partial replacement for sand, in the amount of 10% the weight of 

cement, and, as an additive, in the amount of 20% of the weight of cement, the 

compressive strength of ED20 was 2444 psi at 1 day and 10275 psi at 180 days or 

114% and 130%, respectively, compared to the control strength. From Figure 5.32, 

the optimum ratio of the dry fly ash/cement ratio is about 0.3. At the ages up to 28 

days, it is very difficult to see the optimum value but it is clear after 90 days. 
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Figure 5.31 Effect of the Dry Fly Ash as a Partial Addition and Replacement of 
Sand on the Strength of Mortar 

Figure 5.32 Relationship between Compressive Strength of the Dry Fly Ash as a 
Partial Addition and Replacement of Sand Versus the Dry Fly Ash/Cement Ratio 
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5.9.2 Weathered Fly Ash as a Partial Addition and Replacement of Sand 

As shown in Figure 5.33, the results using the weathered fly ash are almost the same 

as the dry fly ash. It increases compressive strength of the sample. The optimum 

ratio of the weathered fly ash/cement is about 0.2 to 0.4 (See Figure 5.34). At the 

age of 180 days, the compressive strength of all fly ash mortar samples are higher 

than 10,000 psi and the highest is in EW30 which is 10949 psi or 138% of the control 

strength. The results of this test series suggest that the partial addition and 

replacement of fly ash in the mix gives superior of mortar strength than the control. 

Huang et al. (1991) suggested that fly ash used as 20% replacement for cement and 

40% replacement for river sand is an engineering economic application. 

Figure 5.33 Effect of the Weathered Fly Ash as a Partial Addition and Replacement 
of Sand on the Strength of Mortar 
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Figure 5.34 Relationship between Compressive Strength of the Weathered Fly Ash 
as a Partial Addition and Replacement of Sand Versus the 

Weathered Fly Ash/Cement Ratio 

5.10 Fly Ash as an Additive 

In this experiment, dry and weathered fly ashes were used as an addition in cement 

mortar. By keeping cement, sand, and water as constants, fly ash was added directly 

in the mix. The addition of fly ash was varied from 10% to 40% by weight of cement. 

The mix proportion is shown in Table 4.1 series X. 

Generally, the addition of fly ash up to 40% by weight of cement results in a 

higher compressive strength of mortar at all ages. This result is in agreement with 

Berry and Malhotra (1980) who reported that the addition of dry fly ash generally 

increased the strength of concrete at all ages. The addition of very high volume of 

fly ash (more than 30%) causes lumps in the mix and sometimes reduces the 

compressive strength. 
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5.10.1 Addition of the Dry Fly Ash 

The effect of adding additional fly ash on the strength of mortar is shown in Figure 

5.35. Addition of the dry fly ash generally reduces the workability of mortar but 

increases the compressive strength. It can be seen that the compressive strength 

tends to increase with the age of fly ash mortar. The additional 10% of the dry fly 

ash by weight of cement increases the compressive strength from 7082 psi at 28 days 

to 9342 psi at 180 days or from 103% to 118% of the control strength, respectively. 

20% additional fly ash produces the highest compressive strength (See Figure 5.36). 

For this optimum percentage, the compressive strength varied from 2444 psi at 1 day 

to 9768 psi at 180 days or 114% to 123% of the control strength. 

Some samples such as AD30 and AD40 had lower compressive strength than 

control strength at the age up to 28 days. This effect is probably due to the lumps in 

the mix. The lumps are black spots and be easily seen after test for compression. 

The addition of high volume of fly ash usually caused lumps to form in cement-fly ash 

paste. By keeping the water constant, the addition of large volume of fly ash caused 

lumping and reduced compressive strength because of a non-homogeneous mix. 

After 28 days, all samples had higher compressive strength than the control strength. 

5.10.2 Addition of the Weathered Fly Ash 

In Figure 5.37, the addition of the weathered fly ash results in higher compressive 

strength than the control mortar. The compressive strength of AW30 varies from 

2401 psi at 1 day to 10554 psi at 180 days or 112% to 133% of the control strength. 

The increase of compressive strength is small up to the age of 28 days but has a 

pronounced effect at 180 days. At early ages, the addition of fly ash does not effect 

the strength of mortar. Figure 5.38 shows that the fly ash-cement ratio does not have 

any effect on the strength of fly ash mortar until the age of 28 days. After that, an 

increasing trend in the strength was observed. The addition of 30% of the weathered  
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fly ash gives the highest compressive strength. 

Figure 5.35 Effect of Addition the Dry Fly Ash on the Strength of Mortar 

Figure 5.36 Relationship between Compressive Strength of Addition the Dry Fly 
Ash Mortar and the Dry Fly Ash/Cement Ratio 



105  

Figure 5.37 Effect of Addition the Weathered Fly Ash on the Strength of Mortar 

Figure 5.38 Relationship between Compressive Strength of Addition the Weathered 
Fly Ash Mortar and the Weathered Fly Ash/Cement Ratio 
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5.11 Soaked and Washed Fly Ashes 

Soaked and washed fly ashes were used in this experiment. The soaked fly ash was 

produced by covering the dry fly ash with tap water for 1 week. Everyday the soaked 

fly ash was stirred to make sure that every particle of fly ash was soaked by water. 

After 7 days, the water of soaked fly ash and soaked fly ash were used for casting 

mortar specimens. 

The washed fly ash was prepared by covering the dry fly ash with water, then 

stirred until they mixed together. The fly ash slurry was allowed to settle for one day 

then the water was decanted. After the water was taken out, the clean water was 

added into the fly ash again, then stirred and decanted again next day. Repeating 

this process for 1 week, the washed fly ash used for casting mortar specimens was 

obtained. 

The washed and soaked fly ashes were used as addition to and as a 

replacement for cement. The 2"x2"x2" cube mortar was used to investigate the 

compressive strength. The compressive strengths of fly ash mortar were tested from 

1 day to 180 days. The mix proportions are shown in Table 4.1 series XI. JC is the 

control sample. JR  and JA refer to the samples with the replacement and addition, 

respectively, of the soaked fly ash. TR  and TA refer to the samples with the 

replacement and addition of the washed fly ash. Numbers 15 and 25 stand for the 

amount of replacement or addition of fly ash in the mix. 

5.11.1 Soaked and Washed Fly Ashes as a Replacement 

The results of compressive strength of soaked and washed fly ash mortar are shown 

in Table 5.24. Table 5.25 is the results showing percentage compressive strength of 

the soaked and washed fly ash mortar comparing with the control strength. It is seen 

in Figures 5.39 and 5.40 that with the same amount of replacement of soaked or 

washed fly ashes, the compressive strength of fly ash mortar is almost the same. 

Carles-Gibergues and Aitcin (1986) also reported the same results for the behavior 
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of the washed and unwashed fly ash concrete after 7 days. Additionally, there was no 

difference in the chemical composition of the extracted water and the water 

remaining capillarity in the wet fly ash. The replacement of soaked or washed fly ash 

lowers compressive strength of mortar comparing with the control strength up to 56 

days. After 90 days, 15% and 25% replacement of the soaked or washed fly ash gives 

higher compressive strength than the control strength. At the age of 180 days, the 

strengths of JR15, JR25, TR15, and TR25 are 105%, 108%, 110%, and 107%, 

respectively, of the control strength. 

Table 5.24 Compressive Strength of Soaked and Washed Fly Ash Mortar 

Sam. 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

JC 2144 4303 5252 6109 6884 7320 7448 7918 
JR15 1591 3812 4805 5724 6153 6651 7796 8322 
JA15 2221 4658 5940 6414 7453 8458 9636 10268 
TR15 1895 3500 4675 5655 6090 7307 7706 8678 
TA15 2224 4454 5732 6499 7249 8903 9453 10323 
JR25 1338 3197 4301 5150 5891 6806 7600 8519 
JA25 2308 4436 5640 6866 7476 8468 9930 10749 
TR25 1354 3089 3841 4706 5536 6367 7868 8444 
TA25 2423 5001 5849 7085 7883 8891 9940 11396 

Table 5.25 Percentage Compressive Strength of Soaked and 
Washed Fly Ash Mortar 

Sam. 
No 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

JC 100 100 100 100 100 100 100 100 
JR15 74 89 91 94 89 91 105 105 
JA15 104 108 113 105 108 116 129 130 
TR15 88 81 89 93 88 100 103 110 
TA15 104 104 109 106 105 122 127 130 
JR25 62 74 82 84 86 93 102 108 
JA25 108 103 107 112 109 116 133 136 
TR25 63 72 73 77 80 87 106 107 
TA25 113 116 111 116 115 121 133 144 
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5.11.2 Soaked and Washed Fly Ashes as an Additive 

The addition of soaked and washed fly ashes result in a higher compressive strength 

than the control. The addition 15% of soaked and washed fly ashes give very similar 

compressive strengths at the same age. The compressive strength of JA15 varies 

from 2221 psi at 1 day to 10268 psi at 180 days. TA15 varies from 2224 psi at 1 day to 

10323 psi at 180 days. With 25% of addition, the strength of JA25 varies from 2308 

psi at 1 day to 10749 psi at 180 days while the strength of TA25 varies from 2423 psi 

at 1 day to 11396 psi at 180 days. Generally, the addition 25% by weight of 

cementitious material of soaked and washed fly ashes, produce higher compressive 

strength than the addition only 15% of soaked and washed fly ashes at the age of 180 

days.  

Figure 5.39 Effect of Soaked and Washed Fly Ashes on the Strength of Mortar (with 
15% of Soaked and Washed Fly Ashes)  
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Figure 5.40 Effect of Soaked and Washed Fly Ashes on the Strength of Mortar (with 
25% of Soaked and Washed Fly Ashes) 

5.12 Effect of Fractionated Fly Ashes on the Strength of Concrete  

This experimental series concentrates on the study of fly ash when the particle size 

distributions have a smaller range than the original feed fly ash, that is, fly ash as 

received from storage silo. Due to its narrower range of particle size distribution, 

each fractionated fly ashes gives a more unique indication of its pozzolanic activity 

than the original feed fly ashes which has a wider range of particle size distribution. 

The materials in this experiment consisted of cement type I, fractionated fly ashes, 

sand, coarse aggregate, and water. No any kind of admixture was used. 

Sample CCCC is the control sample, i.e. sample without any fly ash in the mix. 

CDRY and CWET are the samples for concrete mixed with the original feed of dry 

and wet bottom fly ashes, respectively. The fractionated fly ashes used in the sample 

are implied by the number(s) follow by the character. The last two digits indicate the 

proportion of fly ash in the mix. For example, sample "3FC15" means that the 
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concrete sample consists of 3F fly ash 15% by weight of cementitious materials. 

Sample "3FC25" stands for the concrete sample using 25% of 3F fly ash by weight of 

cementitious materials. 

5.12.1 Workability of Fractionated Fly Ash Concrete 

Table 5.25 shows the slump test results for fractionated fly ash concrete. The slump 

is usually higher when fly ash is used in agreement with Ukita, Shigematsu, and Ishii 

(1989). Incorporation of fly ash in concrete often improves workability and thereby 

reduces the water requirement with respect to conventional concretes (Lane and 

Best 1982; ACI 226 1987; Yamato and Sugita 1983). The results of this experiment 

show that only the finest fly ash reduces the workability of fresh concrete especially 

when high quantities of fly ash are applied. Most of the other sizes of fly ash increase 

slump. Since the weight of fly ash was kept constant, the finer particle fly ash has 

more surface area and thus needs more water to maintain the same workability as 

the coarser fly ash. 

Table 5.26 Slump of Fractionated Fly Ash Concrete 

Sam. Slump 
(cm) 

Sam. Slump 
(cm) 

Sam. Slump 
(cm) 

Sam. Slump 
(cm) 

3FC15 5.5 3FC25 5.5 3FC35 5.0 3FC50 4.5 
6FC15 8.0 6FC25 7.0 6FC35 8.5 6FC50 8.5 
10FC15 8.0 10FC25 9.0 10FC35 11.0 10FC50 13.0 
11FC15 8.5 11FC25 9.5 11FC35 10.5 11FC50 13.5 
1CC15 7.0 1CC25 8.0 1CC35 6.5 1CC50 8.0 
CDRY15 7.0 CDRY25 8.0 CDRY35 7.5 CDRY50 10.0 

13FC15 6.0 13FC25 5.0 13FC35 3.5 13FC50 3.0 
15FC15 7.0 15FC25 6.0 15FC35 6.0 15FC50 5.0 
16FC15 7.5 16FC25 8.0 16FC35 6.0 16FC50 7.0 
18FC15 6.5 18FC25 8.5 18FC35 7.0 18FC50 12.0 
18CC15 5.0 18CC25 6.5 18CC35 5.5 18CC50 8.0 
CWET15 5.5 CWET25 7.0 CWET35 7.0 CWET50 9.5 

CCCC 5.0 CCCC 5.0 CCCC 5.0 CCCC 5.0 
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With 50% fly ash of the finest particle size in the cementitious materials, the 

fly ash concrete samples of dry and wet bottom fly ashes, 3FC50 and 13FC50, are less 

workable than those of the control concrete which has a slump of about 5 cm. The 

slumps of fly ash concrete from the original feed fly ashes are slightly higher than the 

control mix. For the original feed fly ashes, samples from the dry bottom fly ash, 

CDRY, are more workable than those from the wet bottom fly ash, CWET. This 

may be because the particle sizes of the dry bottom fly ash is larger than those of the 

wet bottom fly ash. With the same amount of fly ash in the mix, the coarsest particle 

sizes, 1CC and 18CC, seem to give a little lower slump than the original feed fly ash 

concrete. 

5.12.2 Compressive Strength of the Fractionated of Dry Bottom Fly Ash Concrete 

with 15% Replacement  

The compressive strength of the fractionated of dry bottom fly ash concrete with 

15% replacement of cement is shown in Table 5.27. The percentage variation of 

compressive strength compared to the control mix is listed in Table 5.28. The 

relationship between compressive strength of the fractionated of dry bottom fly ash 

concrete and its corresponding age is shown in Figure 5.41. 

Table 5.27 Compressive Strength of the Fractionated of Dry Bottom 
Fly Ash Concrete (15% Replacement) 

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
3FC15 1721 5946 7189 8318 9129 9888 11100 
6FC15 1718 5746 6887 7946 8949 9484 10606 
10FC15 1673 5670 6477 7541 8414 9010 10339 
11FC15 1667 5550 6430 7350 8139 8723 9850 
1CC15 1598 5416 6411 6971 7889 8259 9269 
CDRY15 1622 5525 6479 7440 8300 8943 10083 
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Table 5.28 Percentage Compressive Strength of the Fractionated of Dry Bottom Fly 
Ash Concrete (15% Replacement) 

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
3FC15 79.8 95.3 100.7 102.0 104.8 107.5 109.2 
6FC15 79.6 92.1 96.4 97.4 102.8 103.1 104.4 
10FC15 77.6 90.9 90.7 92.4 96.6 98.0 101.8 
11FC15 77.3 89.0 90.0 90.1 93.5 94.9 96.9 
1CC15 74.1 86.8 89.8 85.5 90.6 89.8 91.2 
CDRY15 75.2 88.6 90.7 91.2 95.3 97.3 99.2 

Figure 5.41 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete (15% Replacement) and Age 

The early strength of fractionated fly ash concrete is always lower than the 

control mix. With a portion of cement replaced by the Class F fly ash, the mix 

generally produces lower strength because fly ash acts as a relatively inert 

component during the early period of hydration (Carette and Malhotra 1983). This 

result was also reported by Plowman (1984) and Langley, Carette, and Malhotra 

(1989). 

With 15% replacement of cement by fractionated fly ashes, the compressive 
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strength at 1 day is reduced about 20% to 25% compared to the control strength 

(sample CCCC). The variation of the strength is due to the different particle sizes of 

fly ash. The finer particle fly ash gives a better packing effect than the coarser one. 

After 14 days of curing, 3FC15 concrete (15% replacement of 3F fly ash) has a 

compressive strength essentially equal to the control strength. This means that the 

pozzolanic activity of the finest particle size fly ash produces a higher strength than 

the strength achieved by the hydration process of cement. This result continues 

resulting in larger differences between the 3FC15 fly ash concrete and the control 

concrete. Sample 6FC15 gains the same strength as the control before the age of 56 

days. It needs about 180 days of curing for the samples 10FC15 and CDRY15 (15% 

replacement of the original feed of dry bottom fly ash) to have the same strength as 

the control concrete. With the coarsest particle size of fly ash in concrete, 1CC15, 

the compressive strength varies from 1598 psi at 1 day to 9269 psi at 180 days or from 

74.1% to 91.2% comparing with the control concrete. Considering sample 3FC15, 

the compressive strength varies from 1721 psi at 1 day to 11100 psi at 180 days or 

from 79.8% to 109.2% comparing with the control strength. Since all the chemical 

composition of these fractionated fly ashes are almost the same, the particle size of 

fly ash is the major factor affecting the compressive strength of fly ash concrete. 

5.12.3 Compressive Strength of the Fractionated of Dry Bottom Fly Ash Concrete 

with 25% Replacement 

Table 5.29 shows the compressive strength of the fractionated of dry bottom fly ash 

concrete with 25% replacement of cement. Table 5.30 presents the percentage 

compressive strength of the fractionated of dry bottom fly ash concrete compared to 

the control concrete. The relationship between the compressive strength of the 

fractionated of dry bottom fly ash concrete and its corresponding age is shown in 

Figure 5.42. 
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Table 5.29 Compressive Strength of the Fractionated of Dry Bottom 
Fly Ash Concrete (25% Replacement)  

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
3FC25 1510 5280 6494 7686 8567 9502 10731 
6FC25 1485 4816 5842 7058 8122 8785 9974 
10FC25 1447 4735 5620 6691 7719 8367 9315 
11FC25 1390 4633 5566 6582 7389 8111 9109 
1CC25 1369 4542 5400 6360 7001 7521 8348 
CDRY25 1390 4593 5492 6598 7390 8044 9070 

Table 5.30 Percentage Compressive Strength of the Fractionated of Dry Bottom Fly 
Ash Concrete (25% Replacement)  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
3FC25 70.0 84.7 90.9 94.2 98.4 103.3 105.6 
6FC25 68.8 77.2 81.8 86.5 93.3 95.5 98.2 
10FC25 67.1 75.9 78.7 82.0 88.7 91.0 91.7 
11FC25 64.4 74.3 77.9 80.7 84.9 88.2 89.6 
1CC25 63.5 72.8 75.6 78.0 80.4 81.8 82.2 
CDRY25 64.4 73.6 76.9 80.9 84.9 87.5 89.3 

Figure 5.42 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete (25% Replacement) and Age  
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With 25% replacement of cement by the fractionated of dry bottom fly ashes, 

the early strengths of the concrete, with the same kind of fly ash, are lower than with 

a 15% replacement. To gain the same strength as the control, takes at least 56 days 

for the sample 3FC25 (25% replacement of 3F fly ash). The percentage compressive 

strength of the fractionated of dry bottom fly ash concrete varies form 63.5% in 

1CC25 to 70.0% in 3FC25 at 1 day. The strength gain of 3FC25 sample from 70% (1 

day) to 105.6% (180 days) is about 35.2% which is much higher than that of 1CC25 

concrete which is from 63.5% to 82.2% or 18.7%. The strength gain from 1 day to 

180 days of the original feed of dry bottom fly ash sample (CDRY25) is about 25%. 

The results indicate that the finer fly ash particles gains higher strength than the 

coarser particles. The results of this study also indicate that for compressive strength 

the quality of fly ash can be improved by reducing the particle size of fly ash. 

5.12.4 Compressive Strength of the Fractionated of Dry Bottom Fly Ash Concrete 

with 35% Replacement 

The compressive strength of the fractionated of dry bottom fly ash concrete with 

35% replacement of cement is shown in Table 5.31. The percentage variation of 

compressive strength compared to the control mix is shown in Table 5.32. The 

relationship between compressive strength of the fractionated of dry bottom fly ash 

concrete and its age is shown in Figure 5.43. 

With the replacement of fly ash up to 35% by weight of cementitious 

materials, the percentage compressive strength for fractionated fly ash concrete at 1 

day varies from 39.9% to 52.7% of the control strength, depending on the fineness of 

the fly ash. In general, the compressive strength of the finer particle mixes is higher 

than that for the coarser ones. The finer particles react with cement faster than the 

coarser ones since they have more surface area. The early strengths of all fly ash 

concretes are lower than the control concrete. This behavior is normal in fly ash 
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concrete, especially when a high volume of cement is replaced by fly ash. After 180 

days of curing, the compressive strength of fly ash concrete made from the original 

feed of dry bottom fly ash is 8389 psi or 82.6% of the control concrete. With the 

finest particle size of fly ash, 3F, it takes about 180 days for the fly ash concrete to 

have the same strength as the control when used fly ash 35% by weight of 

cementitious materials. The compressive strength of 3FC35 varies from 1136 psi at 1 

day to 10080 psi at 180 days. That is an increase of about 8.8 times from 1 day to 180 

days. It is interesting to note that the strength of the coarsest sample, i.e. 1CC35, at 

the age of 180 days is only 71.3% of the control strength. 

Table 5.31 Compressive Strength of the Fractionated of Dry Bottom 
Fly Ash Concrete (35% Replacement) 

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
3FC35 1136 4606 5531 6602 7483 8406 10080 
6FC35 988 4222 5324 6378 7246 8001 9451 
10FC35 888 3913 4838 5766 6466 7137 8401 
11FC35 882 3739 4768 5613 6217 6859 8031 
1CC35 860 3567 4501 5240 5691 6200 7242 
CDRY35 906 3895 4696 5798 6440 7189 8389 

Table 5.32 Percentage Compressive Strength of the Fractionated of Dry Bottom Fly 
Ash Concrete (35% Replacement) 

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
3FC35 52.7 73.8 77.5 80.9 85.9 91.4 99.2 
6FC35 45.8 67.7 74.6 78.2 83.2 87.0 93.0 
10FC35 41.2 62.7 67.7 70.7 74.3 77.6 82.7 
11FC35 40.9 59.9 66.8 68.8 71.4 74.6 79.0 
1CC35 39.9 57.2 63.0 64.2 65.4 67.4 71.3 
CDRY35 42.0 62.4 65.8 71.1 74.0 78.2 82.6 
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Figure 5.43 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete (35% Replacement) and Age 

5.12.5 Compressive Strength of the Fractionated of Dry Bottom Fly Ash Concrete 

with 50% Replacement 

The compressive strength of the fractionated of dry bottom fly ash concrete with 

50% replacement of cement is shown in Table 5.33. The percentage variation of 

compressive strength compared to the control mix is listed in Table 5.34. The 

relationship between compressive strength of the fractionated of dry bottom fly ash 

concrete and its age is presented in Figure 5.44. 

With 50% fly ash of the cementitious materials, all strengths of fractionated 

fly ash concrete are lower than the control strength. The compressive strength at 1 

day varies from 407 psi to 567 psi (from the coarse to the fine particle size of fly ash) 

or 18.9% to 26.3% of the control strength. This strength is much lower than the 

control strength which is 2157 psi. The compressive strength of fly ash concrete 
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gradually increases with time due to the pozzolanic activity of fly ash. The strength 

of 3FC50 varies from 567 psi at 1 day to 8639 psi at 180 days or 26.3% to 85.0% 

comparing with the control strength. Considering Figure 5.44, it is seen that after 28 

days the slope of 3FC50 concrete is higher than the slope of CCCC (control sample). 

This means that after 28 days the pozzolanic activity of the fly ash contributes more 

strength than the strength produced by the hydration of cement. 

Table 5.33 Compressive Strength of the Fractionated of Dry Bottom Fly Ash 
Concrete (50% Replacement)  

Sample 
No. 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
3FC50 567 3026 4142 5073 6400 7246 8639 
6FC50 434 2682 3521 4397 5155 5839 7823 
10FC50 425 2649 3140 3857 4527 5271 7069 
11FC50 411 2382 2991 3748 4442 5044 6666 
1CC50 407 2110 2692 3334 3976 4340 5578 
CDRY50 410 2405 3041 3782 4466 5054 6857 

Table 5.34 Percentage Compressive Strength of the Fractionated of Dry Bottom Fly 
Ash Concrete (50% Replacement)  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
3FC50 26.3 48.5 58.0 62.2 73.5 78.8 85.0 
6FC50 20.1 43.0 49.3 53.9 59.2 63.5 77.0 
10FC50 19.7 42.5 44.0 47.3 52.0 57.3 69.6 
11FC50 19.1 38.2 41.9 45.9 51.0 54.9 65.6 
1CC50 18.9 33.8 37.7 40.9 45.7 47.2 54.9 
CDRY50 19.0 38.6 42.6 46.4 51.3 55.0 67.5 
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Figure 5.44 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete (50% Replacement) and Age 

5.12.6 Compressive Strength of the Fractionated of Wet Bottom Fly Ash Concrete 

with 15% Replacement 

The compressive strength of the fractionated of wet bottom fly ash concrete with 

15% replacement of cement is shown in Table 5.35. The percentage variation of 

compressive strength compared to the control mix is presented in Table 5.36. The 

relationship between compressive strength of the wet fractionated fly ash concrete 

and its corresponding age is shown in Figure 5.45. 

The compressive strength of the original feed of wet bottom fly ash is higher 

than that from the dry bottom fly ash at the same age and for the same mix 

proportions. This is primarily due to the finer particle size of the wet bottom fly ash. 

With 15% replacement of cement by fly ash, all the early strengths of fractionated fly 

ash concrete are lower than the control. At 14 days, the compressive strength of 

13FC15 is a little higher than the control strength. After 56 days, sample 15FC15 

gives the same strength as the control concrete. It takes 90 days for samples 16FC15 

and 18FC15 to achieve the same strength as the control concrete. After 180 days, all 
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of the fractionated fly ash concretes have higher strength than the control concrete 

except sample 18CC15 which has 95.3% of the control strength. Sample 18CC15 

uses 18CC fly ash which has the residue retained on sieve No. 325 (45 microns) 29% 

which is lower than the limit given by ASTM C-618 (1990) which is 34%. This 

indicates that the active particle size of fly ash is smaller than this size of sieve 

opening. It is also noted that it takes 180 days for the original feed of wet bottom fly 

ash concrete to gain strength of the same order as the control concrete. 

5.12.7 Compressive Strength of the Fractionated of Wet Bottom Fly Ash Concrete 

with 25% Replacement 

The compressive strength of the fractionated of wet bottom fly ash concrete with 

25% replacement of cement is shown in Table 5.37. The percentage variation of 

compressive strength compared to the control mix is listed in Table 5.38. The 

relationship between compressive strength of the fractionated of wet bottom fly ash 

concrete and its corresponding age is shown in Figure 5.46. 

The results of this test are the same as 15% replacement of the fractionated 

of wet bottom fly ash concrete except that the strengths are lower. The early 

strengths of fractionated fly ash concrete are lower than the control concrete up to 

14 days. At the age of 28 days, sample 13FC25 produces a higher strength than the 

control strength and continue higher after this age. At the age of 180 days, the 

compressive strength of 13FC25 is 11162 psi or 109.9% comparing with the control 

concrete. Sample 15FC25 reaches the same strength as the control concrete before 

the age of 56 days. Before 90 days of curing, sample 16FC25 also gives the same 

strength as the control. The strength of concrete using the coarsest particle, 18CC25, 

is only 84.4% of the control concrete at 180 days. The results show that the strength 

of fractionated fly ash concrete depends on the particle size of the fly ash. The 

smaller the particle size of fly ash in concrete, the higher is the compressive strength. 



121  
Table 5.35 Compressive Strength of the Fractionated of Wet Bottom 

Fly Ash Concrete (15% Replacement)  

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
13FC15 1998 6012 7216 8329 9233 9868 11201 
15FC15 1977 5905 6943 7922 8800 9433 10815 
16FC15 1898 5739 6641 7652 8609 9320 10715 
18FC15 1848 5737 6575 7501 8205 9133 10509 
18CC15 1821 5464 6284 7228 7827 8389 9681 
CWET15 1844 5468 6345 7345 8102 8888 10158 

Table 5.36 Percentage Compressive Strength of the Fractionated of Wet Bottom Fly 
Ash Concrete (15% Replacement)  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
13FC15 92.6 96.4 101.1 102.1 106.0 107.3 110.2 
15FC15 91.7 94.7 97.2 97.1 101.1 102.6 106.4 
16FC15 88.0 92.0 93.0 93.8 98.9 101.4 105.5 
18FC15 85.7 92.0 92.1 92.0 94.2 99.3 103.4 
18CC15 84.4 87.6 88.0 88.6 89.9 91.2 95.3 
CWET15 85.5 87.7 88.9 90.0 93.1 96.7 100.0 

Figure 5.45 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete (15% Replacement) and Age  
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Table 5.37 Compressive Strength of the Fractionated of Wet Bottom 

Fly Ash Concrete (25% Replacement)  

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
13FC25 1600 5491 6899 8267 9127 9861 11162 
15FC25 1548 5371 6667 7854 8783 9645 10794 
16FC25 1480 5165 6341 7522 8488 9434 10524 
18FC25 1389 4880 6025 7141 7910 8626 9778 
18CC25 1367 4638 5671 6348 7215 7765 8571 
CWET25 1405 4923 6017 7210 8112 8601 9467 

Table 5.38 Percentage Compressive Strength of the Fractionated of Wet Bottom Fly 
Ash Concrete (25% Replacement)  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
13FC25 74.2 88.0 96.6 101.3 104.8 107.2 109.9 
15FC25 71.8 86.1 93.4 96.3 100.9 104.9 106.2 
16FC25 68.6 82.8 88.8 92.2 97.5 102.6 103.6 
18FC25 64.4 78.2 84.4 87.5 90.8 93.8 96.2 
18CC25 63.4 74.4 79.4 77.8 82.9 84.4 84.4 
CWET25 65.1 78.9 84.3 88.4 93.2 93.5 93.2 

Figure 5.46 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete (25% Replacement) and Age  
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5.12.8 Compressive Strength of the Fractionated of Wet Bottom Fly Ash Concrete 

with 35% Replacement 

The compressive strength of the fractionated of wet bottom fly ash concrete with 

35% replacement of cement is shown in Table 5.39. The percentage variation of 

compressive strength compared to the control mix is listed in Table 5.40. The 

relationship between compressive strength of the fractionated of wet bottom fly ash 

concrete and its corresponding age is shown in Figure 5.47. 

With 35% replacement of cement by fly ash in concrete, the compressive 

strengths are lower than those for 15% and 25% replacement, especially at the early 

ages. The compressive strength of fractionated fly ash concrete at 1 day varies from 

851 psi to 1460 psi, moving from coarse to fine particle sizes. Most strengths of 

fractionated fly ash concrete are lower than the control concrete at all ages except 

the sample with the finest particle size of fly ash, 13FC35. The strength of sample 

13FC35 varies from 1460 psi at 1 day to 10788 psi at 180 days or 67.6% to 106.2% of 

the control strength. The strength of fly ash concrete with 35% replacement can be 

as high as the control strength within 90 days by using 13F fly ash. With the original 

feed of wet bottom fly ash, CWET35, had a compressive strength at 180 days about 

90% of the control strength. 

Table 5.39 Compressive Strength of the Fractionated of Wet Bottom 
Fly Ash Concrete (35% Replacement) 

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
13FC35 1460 4944 5945 7314 8410 9188 10788 
15FC35 1187 4754 5639 6838 7927 8740 9983 
16FC35 942 4616 5409 6609 7532 8215 9578 
18FC35 899 4243 5068 6057 6859 7546 9008 
18CC35 851 3920 4660 5466 6047 6649 7875 
CWET35 926 4438 5144 6144 6940 7721 9135 
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Table 5.40 Percentage Compressive Strength of the Fractionated of Wet Bottom Fly 
Ash Concrete (35% Replacement) 

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
13FC35 67.7 79.3 83.3 89.7 96.6 99.9 106.2 
15FC35 55.0 76.2 79.0 83.8 91.0 95.1 98.3 
16FC35 43.7 74.0 75.7 81.0 86.5 89.3 94.3 
18FC35 41.7 68.0 71.0 74.3 78.8 82.1 88.7 
18CC35 39.5 62.9 65.3 67.0 69.4 72.3 77.5 
CWET35 42.9 71.2 72.0 75.3 79.7 84.0 89.9 

Figure 5.47 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete (35% Replacement) and Age 

5.12.9 Compressive Strength of the Fractionated of Wet Bottom Fly Ash Concrete 

with 50% Replacement 

The compressive strength of the fractionated of wet bottom fly ash concrete with 

50% replacement of cement is listed in Table 5.41. The percentage variation of 
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compressive strength compared to the control mix is listed in Table 5.42. The 

relationship between compressive strength of the fractionated of wet bottom fly ash 

concrete and its corresponding age is shown in Figure 5.48. 

The replacement of cement with fly ash 50% by weight of cementitious 

materials gives very low strength at 1 day. The compressive strength at 1 day varies 

form 484 psi to 733 psi or 22.4% to 34.0% compared to the control strength. After 

180 days of curing, all strengths of the fractionated fly ash concrete are lower than 

the control concrete. Although the cement in each fly ash concrete is only half of the 

control sample, some of fly ash concretes still give a good strength results. Sample 

13FC50 has compressive strength 9672 psi or 95.2% of the control strength at 180 

days. The strengths of samples 15FC50 and 16FC50 are 88.2% and 80.8% of the 

control concrete, respectively. The development of strength for 13FC50 with 50% is 

very good compared to the control. It varies from 34.0% at 1 day to 95.2% at 180 

days. Unlike the 18CC50 sample, which varies from 22.4% at 1 day to only 60.5% at 

180 days. 

Table 5.41 Compressive Strength of the Fractionated of Wet Bottom 
Fly Ash Concrete (50% Replacement) 

Sample 
No. 

Compressive Strength (psi) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 2157 6237 7141 8157 8707 9195 10161 
13FC50 733 3443 4292 5462 6943 7850 9672 
15FC50 629 3379 4239 5038 5894 6731 8964 
16FC50 547 3088 3872 4751 5438 6275 8212 
18FC50 520 2754 3370 4185 5132 5769 7377 
18CC50 484 2513 3067 3613 4330 4771 6147 
CWET50 517 2886 3730 4528 5235 5890 7711 
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Table 5.42 Percentage Compressive Strength of the Fractionated of Wet Bottom Fly 
Ash Concrete (50% Replacement) 

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 7-d 14-d 28-d 56-d 90-d 180-d 

CCCC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
13FC50 34.0 55.2 60.1 67.0 79.7 85.4 95.2 
15FC50 29.2 54.2 59.4 61.8 67.7 73.2 88.2 
16FC50 25.4 49.5 54.2 58.2 62.5 68.2 80.8 
18FC50 24.1 44.2 47.2 51.3 58.9 62.7 72.6 
18CC50 22.4 40.3 42.9 44.3 49.7 51.9 60.5 
CWET50 24.0 46.3 52.2 55.5 60.1 64.1 75.9 

 

Figure 5.48 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete (50% Replacement) and Age 

5.12.10 Relationship Between Compressive Strength and Mean Diameter of 

Fractionated Fly Ashes 

The relationships between compressive strength and mean diameter of the 

fractionated of dry bottom fly ashes is shown in Figures 5.49, 5.50, 5.51, and 5.52. It 

is seen that the relationship is well defined as a straight when the coarsest particle 

fraction, 1C (mean diameter 39.45 microns), is not considered. At early ages (1 day 
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to 7 days), there is almost no relationship between the compressive strength and 

mean diameter of fly ash. But, at 180 days the slope of the curve shows clearly that 

the smaller mean diameters (finer particles) of fly ash produce higher strengths than 

the larger mean diameters. 

The same relationships are also occurred for the fractionated of wet bottom 

fly ash concrete. Figures 5.53, 5.54, 5.55, and 5.56 show the relationships between 

compressive strength and mean diameter of the fractionated of wet bottom fly ashes. 

The point for the original feed of wet bottom fly ash (mean diameter of 6.41 

microns) drops dramatically compared with the other points in the same region. 

Since the particle size distribution of the original feed of wet bottom fly ash ranges 

from 1 to 300 microns, the mean diameter does not represent the particle size mix of 

the fly ash as well as it does for the fractionated fly ashes which have a narrower 

particle size distribution. This causes the strength of fly ash concrete made from the 

original feed fly ash to drop at that point because the coarse particles of fly ash do 

not react completely with Ca(OH)2  to form C-S-H resulting in a lower compressive 

strength at that point. 

Figure 5.49 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (15% Replacement) 
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Figure 5.50 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (25% Replacement) 

Figure 5.51 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (35% Replacement) 
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Figure 5.52 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (50% Replacement) 

Figure 5.53 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (15% Replacement) 
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Figure 5.54 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (25% Replacement) 

Figure 5.55 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (35% Replacement) 
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Figure 5.56 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Concrete and Mean Diameter of Fly Ash (50% Replacement) 

5.13 Effect of Fractionated Fly Ashes on the Strength of Mortar 

In addition to the study of fractionated fly ash concrete, cement fly ash mortar was 

also used to verify the effect of fractionated fly ashes on the strength of mortar. The 

fractionated fly ashes from the dry and wet bottom boilers were used as a 

replacement for cement at 15%, 25%, and 50% by weight of cementitious (cement + 

fly ash) materials. The water to cementitious materials ratio was kept as a constant 

0.5. Control mortar, without any fly ash replacement, using the same mix proportion 

and the same water cementitious materials ratio was also mixed and cast. No any 

kind of admixture. The mix proportion is shown in Table 4.3. After casting 24 hours, 

the 2"x2"x2" cube samples were removed from the mold and cured in saturated lime 

water prior to test. The compressive strength of samples were tested at the age of 1, 

3, 7, 14, 28, 56, 90, and 180 days. 

CF is the control sample. Samples "DRY" and "WET" are the mortars with 

the original feed of dry and wet bottom fly ashes, respectively. The numbers "15", 
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"25", and "50" stand for the percentage of cement replaced by fly ash. The 3F15 

sample is fly ash mortar using 3F fly ash as a replacement for cement 15 percent by 

weight of cementitious materials. Likewise, 6F15 is the fly ash mortar using 6F fly 

ash as a 15 percent replacement for cement by weight of cementitious materials. 

5.13.1 Compressive Strength of Fractionated Fly Ash Mortar with 15% Replacement 

The compressive strength of fractionated fly ash mortar with 15% replacement of 

cement is shown in Table 5.43. The percentage compressive strength of fractionated 

fly ash mortar compared to the control mortar strength are listed in Table 5.44. The 

relationship between the compressive strength of fractionated fly ash mortar and age 

is shown in Figure 5.57 (dry bottom fly ash) and Figure 5.58 (wet bottom fly ash). 

As expected, the early age strengths of fly ash mortar are lower than the 

control mortar since no kind of modification of the mix was applied. This 

phenomenon is the same as that for the concrete. Because of the fact that less 

cement is presented in the fly ash mortar, it would seem to be inevitable that there 

would be less strength developed at early ages (Plowman 1984). With 15% 

replacement of fractionated fly ashes, the compressive strength is more than 80% of 

the control mortar strength at 1 day. The percentage compressive strengths of 

fractionated fly ash mortars gradually increase with age. The strengths of 

fractionated fly ash mortar also depend on the average size of fly ash particles. 

Consider the fractionated of dry bottom fly ash mortar at 1 day, the results show that 

the strengths increase with the decrease in particle sizes of fly ash. They vary from 

2290 psi for coarse particles to 2666 psi for fine particles. At all curing ages, the 

lowest compressive strengths occur in the samples with the coarsest particles of fly 

ash (1C15 and 18C15). Up to 14 days, the compressive strengths of all fly ash 

mortars are lower than the control strength, except the samples with the fine fly 

ashes (3F15 and 13F15). The compressive strengths of samples 3F15 and 13F15 at 
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14 days are 7968 psi and 7925 psi, respectively. These strengths represent 101.1% 

and 100.5% of the control strength. After 180 days of curing, all samples of 

fractionated fly ash mortar give higher strength than the control sample, except 

samples 1C15 and 18C15. Since 1C15 and 18C15 samples use the coarsest particles 

of each type of fly ash to replace cement, it seems that the pozzolanic activity 

between fly ash and Ca(OH)2  is not great enough to make up for the strength given 

by the cement hydration process. 

The compressive strengths of 1C15 and 18C15 are 93.6% and 92.7% of the 

control mortar at 180 days, respectively. At the same age and for the same type of fly 

ash, the finer the particle size of fly ash in the mortar, the higher is the compressive 

strength. It is noted that the strength of mortar made from the original feed of wet 

bottom fly ash (WET15) is slightly higher than that from the dry bottom fly ash. This 

may be due to the fact that the particle sizes of the wet bottom fly ash are much finer 

than the dry ones. 

Table 5.43 Compressive Strength of the Fractionated Fly Ash (Dry and Wet Bottom) 
Mortar with 15% Replacement 

Sample 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

CF 2851 5216 7006 7883 9094 9872 10356 11057 

3F15 2666 5002 6771 7968 9415 11112 12072 13108 
5F15 2486 4972 6635 7789 9089 10503 11485 12511 
6F15 2383 4962 6576 7709 8756 10202 11147 11927 
10F15 2402 4922 6506 7655 8551 9807 10609 11815 
11F15 2363 4977 6420 7574 8515 9654 10362 11502 
1C15 2290 4837 6376 7254 8142 9102 9715 10353 
DRY15 2416 4801 6493 7416 8537 9752 10606 11591 

13F15 2764 5146 6807 7925 9402 11209 12137 13218 
14F15 2608 5059 6760 7767 9235 10578 11415 12307 
15F15 2533 4981 6707 7750 9111 10290 11082 12002 
16F15 2361 4622 6613 7727 8867 10017 10807 11705 
18F15 2330 4554 6293 7217 8242 9234 9922 11291 
18C15 2322 4275 6007 6911 7724 8871 9413 10254 
WET15 2525 4946 6683 7603 8671 9914 10637 11715 
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Table 5.44 Percentage Compressive Strength of the Fractionated Fly Ash (Dry and 
Wet Bottom) Mortar with 15% Replacement  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

CF 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

3F15 93.5 95.9 96.6 101.1 103.5 112.6 116.6 118.5 
5F15 87.2 95.3 94.7 98.8 99.9 106.4 110.9 113.2 
6F15 83.6 95.1 93.9 97.8 96.3 103.3 107.6 107.9 
10F15 84.3 94.4 92.9 97.1 94.0 99.3 102.4 106.9 
11F15 82.9 95.4 91.6 96.1 93.6 97.8 100.1 104.0 
1C15 80.4 92.7 91.0 92.0 89.5 92.2 93.8 93.6 
DRY15 84.8 92.0 92.7 94.1 93.9 98.8 102.4 104.8 

13F15 97.0 98.7 97.2 100.5 103.4 113.5 117.2 119.5 
14F15 91.5 97.0 96.5 98.5 101.5 107.2 110.2 111.3 
15F15 88.9 95.5 95.7 98.3 100.2 104.2 107.0 108.5 
16F15 82.8 88.6 94.4 98.0 97.5 101.5 104.4 105.9 
18F15 81.8 87.3 89.8 91.6 90.6 93.5 95.8 102.1 
18C15 81.5 82.0 85.7 87.7 84.9 89.9 90.9 92.7 
WET15 88.6 94.8 95.4 96.4 95.3 100.4 102.7 106.0 

Figure 5.57 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Mortar and Age with 15% Replacement of Fly Ash  
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Figure 5.58 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Mortar and Age with 15% Replacement of Fly Ash 

5.13.2 Compressive Strength of Fractionated Fly Ash Mortar with 25% Replacement 

The compressive strength of fractionated fly ash mortar with 25% replacement of 

cement is shown in Table 5.45. The percentage compressive strength of fractionated 

fly ash mortar compared to the control mortar is shown in Table 5.46. The 

relationship between compressive strength of the fractionated of dry bottom fly ash 

mortar and age is shown in Figure 5.59. Figure 5.60 is the relationship between 

compressive strength of fractionated of wet bottom fly ashes and age. 

The compressive strength of fractionated fly ash mortar with 25% replacement is 

somewhat lower than that with 15% replacement. The  trend is the same as the 15% 

replacement. All of the early strengths of the fractionated of dry bottom fly ash 

mortars are lower than the control mortar up to 28 days. With 25% replacement, the 

strengths of mortar from the original feed (dry or wet bottom fly ash) is only about 

30% of the control strength at 1 day. For the replacement with the fractionated of 
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wet bottom fly ashes, most of fly ash mortars give lower compressive strength than 

the control strength at the age of 28 days except sample 13F25. The compressive 

strength of 13F25 is 9112 psi or 100.2% of the control strength at the age of 28 days. 

With the replacement using the original feed of dry and wet bottom fly ashes, the 

compressive strengths are 7821 psi and 8031 psi, respectively or 86% and 88.3% 

compared to the control mortar at 28 days. Usually, the strength of mortar from the 

original feed of wet bottom fly ash is slightly higher than the mortar made from the 

original feed of dry bottom fly ash. 

Table 5.45 Compressive Strength of the Fractionated Fly Ash (Dry and Wet 
Bottom) Mortar with 25% Replacement  

Sample 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

CF 2850 5216 7006 7883 9095 9872 10356 11057 

3F25 2106 4248 5988 7336 8882 10146 10951 12237 
5F25 1863 4002 5632 7001 8417 9514 10452 11797 
6F25 1897 3915 5378 6754 8278 9315 10323 11412 
10F25 1725 3795 5287 6710 7988 8789 9591 11020 
11F25 1755 3640 5049 6521 7721 8545 9282 10145 
1C25 1723 3639 4976 5671 6710 7575 8110 9219 
DRY25 1922 3971 5476 6736 7821 8878 9758 11164 

13F25 2427 4617 6501 7493 9112 10323 11125 12343 
14F25 2330 4387 6091 7186 8601 9762 10712 11875 
15F25 2355 4253 5834 6887 8398 9354 10397 11511 
16F25 2337 4232 5820 6530 8086 9211 10321 11459 
18F25 1995 4212 5674 6439 8001 8957 10001 10942 
18C25 1992 3964 5239 5951 7356 8543 9216 10068 
WET25 1981 4125 5833 6570 8031 8987 9831 11245 
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Table 5.46 Percentage Compressive Strength of the Fractionated Fly Ash (Dry and 
Wet Bottom) Mortar with 25% Replacement 

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

CF 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

3F25 73.9 81.4 85.5 93.1 97.7 102.8 105.7 110.7 
5F25 65.4 76.7 80.4 88.8 92.5 96.4 100.9 106.7 
6F25 66.6 75.1 76.8 85.7 91.0 94.4 99.7 103.2 
10F25 60.5 72.8 75.5 85.1 87.8 89.0 92.6 99.7 
11F25 61.6 69.8 72.1 82.7 84.9 86.6 89.6 91.8 
1C25 60.5 69.8 71.0 71.9 73.8 76.7 78.3 83.4 
DRY25 67.4 76.1 78.2 85.4 86.0 89.9 94.2 101.0 

13F25 85.2 88.5 92.8 95.1 100.2 104.6 107.4 111.6 
14F25 81.8 84.1 86.9 91.2 94.6 98.9 103.4 107.4 
15F25 82.6 81.5 83.3 87.4 92.3 94.8 100.4 104.1 
16F25 82.0 81.1 83.1 82.8 88.9 93.3 99.7 103.6 
18F25 70.0 80.8 81.0 81.7 88.0 90.7 96.6 99.0 
18C25 69.9 76.0 74.8 75.5 80.9 86.5 89.0 91.1 
WET25 69.5 79.1 83.3 83.3 88.3 91.0 94.9 101.7 

The compressive strength of fly ash mortar with the very coarse fly ashes, i.e. 

1C25 and 18C25, are 83.4% and 91.1%, respectively at the age of 180 days compared 

with the control strength. For both types of fly ash, the compressive strength of 

fractionated fly ash mortar increases with the decrease of fly ash particle size. After 

the age of 180 days, most of fly ash mortars have strength at the same level or higher 

than the control, except the mortars made with the coarse particle sizes (11F, 1C, 

and 18C) of fly ash. The original feed of fly ash needs 180 days of curing to gain the 

strength at the same level as the control strength. The results indicates that the use 

of fine particles of the fractionated fly ashes increase the rate of pozzolanic activity. 

The finer the particle size of fly ash, the greater the rate of pozzolanic activity 

resulting in the faster rate of the strength development. 
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Figure 5.59 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Mortar and Age with 25% Replacement of Fly Ash 

Figure 5.60 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Mortar and Age with 25% Replacement of Fly Ash 
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5.133 Compressive Strength of Fractionated Fly Ash Mortar with 50% Replacement 

Table 5.47 show the results of compressive strength of fractionated fly ash mortar 

with 50% replacement of cement. Table 5.48 lists the percentage compressive 

strength of fractionated fly ash mortar compared to the control mortar. Figures 5.61 

and 5.62 are the relationships between the compressive strength of the fractionated 

fly ash (dry and wet bottom) mortar and age. 

With a high percentage of fly ash in the mix, the early strengths of fly ash 

mortar are very low. All strengths of fractionated fly ash mortars at 1 day are less 

than 50% of the control strength. The compressive strengths of fractionated fly ash 

mortars at 1 day vary from 711 psi to 1322 psi, depending on the particle size of fly 

ash. The percentage compressive strength of sample 3F50 varies from 46.4% at 1 

day to 81.6% at 180 days. With the original feed fly ashes, the strengths of the dry 

and wet bottom fly ash mortar are 26.2% and 30.2%, of the control mortar 

respectively. For the original feed of dry bottom fly ash sample, DRY50, the 

compressive strength is 747 psi at 1 day and increases to 7642 psi at 180 days. In 

general, the compressive strength of the original feed of wet bottom fly ash is higher 

than that of the dry one. The reason is that the average particle size of the wet 

bottom fly ash is finer than that of the dry one. After 180 days, all strengths of 

fractionated fly ash mortar still lower than the control mortar. Considering the 

graphs of Figures 5.61 and 5.62, it is believed that the samples from fine fly ashes, i.e. 

3F50, 6F50, 13F50, 14F50, and 15F50 are still gaining strength after 180 days. 

According to Hensen (1990), the pozzolanic activity of fly ash will proceed until 3 

years after casting concrete. 
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Table 5.47 Compressive Strength of the Fractionated Fly Ash (Dry and Wet Bottom) 

Mortar with 50% Replacement  

Sample 
No. 

Compressive Strength (psi) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

CF 2850 5216 7006 7883 9095 9872 10356 11057 

3F50 1322 2552 3545 4062 5127 6062 7211 9017 
5F50 1012 2527 3350 3890 4784 5932 6948 8860 
6F50 836 2182 3097 3647 4551 5460 6412 8421 
10F50 711 1982 2745 3249 4150 5014 5862 7407 
11F50 726 1909 2654 3158 3858 4543 5521 6879 
1050 769 1817 2385 3035 3603 4180 4425 5377 
DRY50 747 1930 2876 3449 4496 5345 6022 7642 

13F50 1314 2655 3851 4802 5692 6754 7816 9742 
14F50 1020 2541 3709 4632 5552 6512 7492 9387 
15F50 853 2498 3631 4522 5384 6503 7299 9120 
16F50 718 2618 3543 4238 5405 6387 7230 8607 
18F50 991 2373 3078 3858 4732 5855 6506 8106 
18C50 784 2104 2836 3325 4068 4934 5491 6839 
WET50 861 2513 3407 4144 5313 6435 7063 8519 

Table 5.48 Percentage Compressive Strength of the Fractionated Fly Ash (Dry and 
Wet Bottom) Mortar with 50% Replacement  

Sample 
No. 

Percentage Compressive Strength (%) 

1-d 3-d 7-d 14-d 28-d 56-d 90-d 180-d 

CF 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

3F50 46.4 48.9 50.6 51.5 56.4 61.4 69.6 81.6 
5F50 35.5 48.4 47.8 49.3 52.6 60.1 67.1 80.1 
6F50 29.3 41.8 44.2 46.3 50.0 55.3 61.9 76.2 
10F50 24.9 38.0 39.2 41.2 45.6 50.8 56.6 67.0 
11F50 25.5 36.6 37.9 40.1 42.4 46.0 53.3 62.2 
1050 27.0 34.8 34.0 38.5 39.6 42.3 42.7 48.6 
DRY50 26.2 37.0 41.1 43.8 49.4 54.1 58.1 69.1 

13F50 46.1 50.9 55.0 60.9 62.6 68.4 75.5 88.1 
14F50 35.8 48.7 52.9 58.8 61.0 66.0 72.3 84.9 
15F50 29.9 47.9 51.8 57.4 59.2 65.9 70.5 82.5 
16F50 25.2 50.2 50.6 53.8 59.4 64.7 69.8 77.8 
18F50 34.8 45.5 43.9 48.9 52.0 59.3 62.8 73.3 
18C50 27.5 40.3 40.5 42.2 44.7 50.0 53.0 61.9 
WET50 30.2 48.2 48.6 52.6 58.4 65.2 68.2 77.0 
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Figure 5.61 Relationship between Compressive Strength of the Fractionated of Dry 
Bottom Fly Ash Mortar and Age with 50% Replacement of Fly Ash 

Figure 5.62 Relationship between Compressive Strength of the Fractionated of Wet 
Bottom Fly Ash Mortar and Age with 50% Replacement of Fly Ash 
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5.14 Setting Time of Fractionated Fly Ash-Cement Paste 

Table 5.49 shows the results of setting time of fractionated fly ash-cement paste by 

Vicat needle method. Sample CEM is the cement paste without any fly ash. Sample 

3F is the fly ash-cement paste with replacement of cement by 3F fly ash. DRY and 

WET are the samples with the replacement of the original feed of thy and wet 

bottom fly ashes, respectively. 

Table 5.49 Setting Time of Fractionated Fly Ash-Cement Paste 

Sam. 
No. 

15% Repl. 25% Repl. 35% Repl. 50% Repl. 

Ini. 	Final Ini. 	Final Ini. 	Final Ini. 	Final 
(h:min) (h:min) (h:min) (h:min) 

CEM 2:40 	5:20 2:40 	5:20 2:40 	5:20 2:40 	5:20 

3F 2:50 	5:45 3:00 	6:00 3:25 	6:15 3:35 	6:50 
6F 2:55 	5:45 3:05 	6:05 3:25 	6:20 3:40 	6:55 
1C 2:55 	5:45 3:15 	6:10 3:30 	6:30 3:50 	6:55 
DRY 2:55 	5:45 3:10 	6:10 3:20 	6:15 3:50 	6:50 

13F 2:50 	5:30 2:55 	5:40 3:00 	5:40 3:10 	6:30 
16F 2:55 	5:40 3:05 	5:45 3:05 	5:40 3:15 	6:35 
18C 2:50 	5:40 3:15 	5:50 3:20 	5:55 3:20 	6:40 
WET 2:50 	5:35 3:05 	5:45 3:10 	5:55 3:15 	6:30 

It is seen that the setting times of fly ash-cement paste increase with the 

increase the amount of fly ash in the paste. The same results were also reported by 

Ravina (1984), Meinlinger (1982), and Lane and Best (1982). The initial and final 

setting times are slightly changed with the 15% replacement of the fractionated of 

thy and wet bottom fly ashes. The initial setting time of fractionated fly ash-cement 

paste is about 2 h and 55 min while the setting of the cement paste is 2 h 40 min. The 

final setting times of fly ash-cement paste with 15% replacement (dry or wet bottom 

fly ash) are about 25 minutes longer than the setting time of the cement paste. 

With 25% replacement, the initial setting times increase 20 to 35 minutes 
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from the initial setting time of cement paste depending on the particle size of fly ash. 

The fine particle size of fly ash-cement paste seems to set faster than the paste using 

the coarse fly ash. For the dry bottom fly ash, the initial and final setting times of 

sample 3F are 3 h and 6 h, respectively while the initial and final sets of the sample 

1C are 3 h 10 min and 6 h 10 min, respectively. The setting time of the sample using 

the original feed of wet bottom fly ash is slightly shorter than that of the dry one. 

When the replacement of fly ash increases to 35% by weight of cementitious 

materials, the setting times are longer than those with 15% and 25% replacement. 

The initial sets of fractionated fly ash-cement paste are usually about 3 h 20 min. 

The final setting times of samples from the fractionated of dry bottom fly ashes are 

longer than those for the fractionated of wet bottom fly ashes by about 20 to 30 

minutes. With 35% replacement of the fractionated of dry bottom fly ashes, the final 

setting times are about 1 hour longer than the setting time of the cement paste. With 

the same replacement of the fractionated of wet bottom fly ashes, the final setting 

times are about 40 minutes longer than the cement paste. 

With 50% of fly ash in the fly ash-cement paste, the initial setting times of the 

fractionated of dry bottom fly ashes are about 1 hour longer than the setting time of 

the cement paste. In general, the initial and final setting times of the fractionated of 

wet bottom fly ashes are shorter than those of the dry bottom fly ash. This is due to 

the fact that the fractionated of wet bottom fly ashes have higher CaO content than 

those of the dry bottom fly ashes. The CaO content of the original feed of wet and 

dry bottom fly ashes is 6.89% and 2.41%, respectively. Since CaO can react with 

water and set like cement, the fractionated of wet bottom fly ash pastes set faster 

than that of the dry bottom fly ash paste. 

5.15 Effect of Calcium Oxide (CaO) on the Strength of Fractionated Fly Ash Mortar 

In this experiment, the objective is to accelerate the early strength of fly ash mortar 
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by using calcium oxide (CaO). Calcium oxide in the powder form with purity more 

than 98% was used to increase the calcium oxide content in the fly ash. The 

percentage of fly ash plus calcium oxide in the mix is kept constant as 35% by weight 

of the cementitious (cement+fly ash+calcium oxide) materials. 

CAO is the cement mortar sample without any fly ash or calcium oxide and 

designed as a control sample. DCAO and WCAO are the samples of fly ash mortar 

mixed with the original feed of dry and wet bottom fly ashes, respectively. The 

numbers at the end of the samples, i.e "0", "10", "20", and "30", are the percentage of 

calcium oxide in the mix by weight of fly ash + calcium oxide. Samples CA10, CA20, 

and CA30 are the samples at which the cement was replaced by the calcium oxide as 

3.5%, 7.0%, and 10.5%, respectively by weight of cement+calcium oxide. The 

amounts of calcium oxide replaced by the cement for CA10, CA20, and CA30 are 

the same weight as in the fly ash mortar with the calcium oxide content of 10%, 20%, 

and 30%, respectively. 

Table 5.50 is the compressive strength of the fractionated fly ash mortar 

mixed with calcium oxide. Table 5.51 is the percentage compressive strength of the 

fractionated fly ash mortar mixed with calcium oxide compared to the control 

strength. With a constant of water to cementitious materials ratio, a higher content 

of calcium oxide in the mix made the sample less workable than the cement-mortar 

mix. All the early strengths of the fractionated fly ash mortar is lower than the 

control strength up to 28 days. The use of calcium oxide increases the early strength 

of fractionated fly ash mortar. For the original feed of dry bottom fly ash, the 

strength at 1 day of DCAO (fly ash mortar without calcium oxide) is 970 psi and 

increases to 1993 psi for sample DCA30 (fly ash mortar with calcium oxide 30%) or 

increases from 43.6% to 89.6% of the control strength. For the original feed of wet 

bottom fly ash, the 1 day strength increases from 1033 psi for 0% of the addition of 

calcium oxide to 2294 psi for the 30% of calcium oxide. The increase in the 
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compressive strength at 1 day by the use of calcium oxide is about 2 times of the 

sample without the addition of calcium oxide. This behavior is also occurred in the 

samples with the fractionated 6F, 16F, 1C, and 18C fly ashes. The increase in the 

strength by the use of calcium oxide may be due to the added calcium oxide which is 

an active form. During the mixing period of calcium oxide and water, the chemical 

reaction between calcium oxide and water released energy in the form of heat. This 

heat will accelerate the hydration process of the cement thus gives a higher strength 

at the early ages than the sample without added calcium oxide. The increase in 

strength by using calcium oxide appreciates at the early ages, i.e. up to 14 days. At 28 

days, the differences of the strengths between the samples with and without the 

addition of calcium oxide are not prominent. The compressive strengths at 28 days 

of DCAO and DCA30 are 6813 psi and 7506 psi, respectively or 73.9% and 81.4% of 

the control strength. For the other fractionated fly ash mortars, 6F, 16F, 1C, and 

18C, the strength of fly ash mortar with calcium oxide from 10% to 30% by weight of 

fly ash + calcium oxide are slightly higher than that of the mortar without calcium 

oxide. 

Sample CA10 (replacement of cement by calcium oxide 3.5% by weight of 

cement + calcium oxide) gives strength at 1 day 2485 psi or 111.7% of the control 

mortar. The other two samples, CA20 and CA30, also produce higher strengths than 

the control strength and in a higher magnitude. They are 134.4% and 153.8%, 

respectively compared to the control mortar. The gain of the strength of these 

samples is slow after 3 days. The use of calcium oxide does not give any benefit after 

7 days since the compressive strengths at 7 days of samples CA10, CA20, and CA30 

are 91.7%, 95.1%, and 96.0%, respectively of the control strength. At 28 days, the 

strengths of the samples with the replacement of cement by calcium oxide are about 

90% of the control strength mortar. With the results above, it can conclude that the 

use of calcium oxide to replace cement will accelerate the strength at 1 day but gives 
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a lower strength after 7 days compared to the control mortar. 

Table 5.50 Compressive Strength of the Fractionated Fly Ash Mortar Mixed with 
Calcium Oxide 

Sam 
No. 

Compressive Strength (psi) 

1-day 	3-day 	7-day 14-day 28-day 

CA0 2224 5565 7586 8487 9216 

DCA0 970 2932 4416 5236 6813 
DCA10 1213 3386 4693 5546 6955 
DCA20 1696 3725 5063 6201 7245 
DCA30 1993 4250 5466 6270 7506 

WCA0 1033 3538 4751 5938 7678 
WCA10 1337 3887 5218 6075 7768 
WCA20 2074 4215 5331 6367 7843 
WCA30 2294 4596 5808 6471 7996 

6CA0 1013 3097 4481 5492 7325 
6CA10 1496 3501 4851 6003 7455 
6CA20 1506 3692 5057 6183 7482 
6CA30 1813 3996 5241 6266 7575 

16CA0 1162 3636 4953 6052 7530 
16CA10 1611 3805 5235 6157 7687 
16CA20 2023 4186 5373 6458 7675 
16CA30 2342 4697 5918 6733 8096 

1CA0 811 2661 3935 4845 5680 
1CA10 1318 3130 4277 5121 6035 
1CA20 1321 3221 4406 5193 6071 
1CA30 2029 3832 5181 5728 6378 

18CA0 841 3137 4336 5192 6052 
18CA10 1216 3190 4472 5361 6135 
18CA20 1474 3276 4366 5322 6122 
18CA30 2172 4132 5196 5915 6562 

CA10 2485 5157 6953 7938 8292 
CA20 2990 5698 7218 8087 8491 
CA30 3420 5883 7286 7947 8453 
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Table 5.51 Percentage Compressive Strength of the Fractionated Fly Ash Mortar 
Mixed with Calcium Oxide Compared to the Control Strength 

Sam 
No. 

Percentage Compressive Strength (%) 

1-day 3-day 7-day 14-day 28-day 

CAO 100.0 100.0 100.0 100.0 100.0 

DCA0 43.6 52.7 58.2 61.7 73.9 
DCA10 54.5 60.8 61.9 65.3 75.5 
DCA20 76.3 66.9 66.7 73.1 78.6 
DCA30 89.6 76.4 72.1 73.9 81.4 

WCA0 46.4 63.6 62.6 70.0 83.3 
WCA10 60.1 69.8 68.8 71.6 84.3 
WCA20 93.3 75.7 70.3 75.0 85.1 
WCA30 103.1 82.6 76.6 76.2 86.8 

6CA0 45.5 55.7 59.1 64.7 79.5 
6CA10 67.3 62.9 63.9 70.7 80.9 
6CA20 67.7 66.3 66.7 72.9 81.2 
6CA30 81.5 71.8 69.1 73.8 82.2 

16CA0 52.2 65.3 65.3 71.3 81.7 
16CA10 72.4 68.4 69.0 72.5 83.4 
16CA20 91.0 75.2 70.8 76.1 83.3 
16CA30 105.3 84.4 78.0 79.3 87.8 

1CA0 36.5 47.8 51.9 57.1 61.6 
1CA10 59.3 56.2 56.4 60.3 65.5 
1CA20 59.4 57.9 58.1 61.2 65.9 
1CA30 91.2 68.9 68.3 67.5 69.2 

18CA0 37.8 56.4 57.2 61.2 65.7 
18CA10 54.7 57.3 59.0 63.2 66.6 
18CA20 66.3 58.9 57.6 62.7 66.4 
18CA30 97.7 74.2 68.5 69.7 71.2 

CA10 111.7 92.7 91.7 93.5 90.0 
CA20 134.4 102.4 95.1 95.3 92.1 
CA30 153.8 105.7 96.0 93.6 91.7 

5.16 High Strength Fly Ash and Silica Fume Concrete 

In this section, testing is made to evaluate the effect of silica fume and fly ash when 

used as a cement based matrix in concrete. Silica fume in the powder form and the 

finest fly ash from the dry and wet bottom ashes (3F and 13F) are mixed with 
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concrete as 15% and 25% cement replacements. Superplasticizer is added to lower 

the water content in the mix. With a high portion of silica fume in the mix, the 

superplasticizer is used at 10 ml per pound of the cementitious (cement + fly ash or 

silica fume) materials. 

Sample CSF is the control sample, without any fly ash or silica fume. Samples 

CSF15 and CSF25 are the concrete with 15% and 25% of the weight of cementitious 

materials replaced by silica fume. Sample C3F15 and C3F25 are the concrete with 

15% and 25% replaced by 3F fly ash. Finally, samples C13F15 and C13F25 are the 

concrete with 15% and 25% replacement of 13F fly ash. Table 5.52 shows the 

compressive strength of high strength fly ash and silica fume concrete. Table 5.53 is 

the percentage compressive strength of high strength fly ash and silica fume concrete 

compared with the CSF sample. Figures 5.63 and 5.64 are the relationship between 

the compressive strength of high strength concrete and age when using 15% and 

25% replacement of cement by fly ash or silica fume in the mix. 

Table 5.52 Compressive Strength of High Strength Fly Ash and Silica Fume Concrete 

Sample 
No. 

Compressive Strength (psi) Slump 
(cm) 

1-day 7-day 14-day 28-day 56-day 90-day 

CSF 1912 6352 7346 7881 8645 9322 23 

CSF15 2335 7176 7768 8009 8715 9286 1 
CSF25 2675 6664 7479 8032 8500 9122 0 

C3F15 1216 5855 7056 7820 9031 10023 21 
C3F25 1212 5968 7248 8648 9775 10521 20 

C13F15 1945 6787 7805 8740 9853 10487 16 
C13F25 1782 6091 7240 8561 9814 10748 12 
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Table 5.53 Percentage Compressive Strength of High Strength Fly Ash and Silica 
Fume Concrete Compared with the CSF Sample 

Sample 
No. 

Percentage Compressive Strength (%) 

1-day 7-day 14-day 28-day 56-day 90-day 

CSF 100.0 100.0 100.0 100.0 100.0 100.0 

CSF15 122.1 113.0 105.7 101.6 109.9 99.6 
CSF25 139.9 104.9 101.8 101.9 98.4 97.9 

C3F15 63.6 92.2 96.1 99.2 104.5 107.5 
C3F25 63.4 94.0 98.7 109.7 113.1 112.9 

C13F15 101.7 106.8 106.2 110.9 114.0 112.5 
C13F25 93.2 95.9 98.6 108.6 113.6 115.3 

Figure 5.63 Relationship between Compressive Strength of High Strength Concrete 
and Age with 15% Replacement of Fly Ash or Silica Fume 
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Figure 5.64 Relationship between Compressive Strength of High Strength Concrete 
and Age with 25% Replacement of Fly Ash or Silica Fume 

Since the cementitious materials, sand, coarse aggregate, water, and 

superplasticizer are constants, the consistency of the fresh concrete depends on the 

characteristics of the cementitious materials. Fresh concrete with 25% replacement 

of cement by silica fume had zero slump while the control concrete (CSF) had a 23 

cm slump (see Table 5.52). Because silica fume is very fine particle material, it has 

more surface area than cement on an equal weight basis. In general, when the mix 

proportion of concrete is constant, the mix with silica fume (in powder form) needs 

more water to maintain the same slump. The slump of concrete with fly ash 

replacement is lower than that of the control sample. Usually, fly ash will increase 

the slump of concrete but, this behavior does not apply to this type of fly ash. 3F and 

13F are very fine particle fly ashes, their surface areas measured by the Blaine 

method are much higher than that of the cement. The results of this testing confirms 

the previous result, that very fine particle fly ash will reduce the workability of fresh 
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concrete. 

The compressive strength of the control concrete (CSF) varies from 1912 psi 

at 1 day to 9322 psi at 180 days. Within 7 days, the compressive strength of CSF is 

6352 psi, which can be considered as high strength concrete (ACI 363 1990). The 

compressive strengths at 1 day of CSF15 and CSF25 are 2335 psi and 2675 psi, 

respectively or 22.1% and 39.9%, stronger than the control concrete. Concrete with 

silica fume gains strength very fast at early age. This behavior can be attributed to 

both packing and pozzolanic effects. Because the particle sizes of silica fume are 

very small, they fill the voids of the concrete matrix and make concrete denser and 

more compact after casting. During the curing period, the pozzolanic reaction by 

silica fume will take place with a faster rate than the fly ashes because of its higher 

fineness. After 28 days, the strength gain of silica fume concrete slows and the 

strength falls below that of the control. The percentage of control strength of high 

strength silica fume concrete with 25% replacement reduces from 139.9% at 1 day to 

97.9% at 180 days. 

High strength concrete made from fly ash behaves in different way. The early 

strengths of high strength fly ash concrete are usually lower than the control 

concrete. With 15% replacement of 3F fly ash, the compressive strength of fly ash 

concrete varies from 1216 psi at 1 day to 10023 psi at 180 days or 63.4% to 107.5% of 

the control strength. With 15% replacement of 3F fly ash, the compressive strength 

at 1 day is expected to be on the order of 80% of the control strength. The lower 

value obtained here may be due to the high dose of superplasticizer. The 

superplasticizer used in this experiment is about 3 times higher than the 

recommended by the manufacture. High dosage of this admixture will retard the 

setting of cement which results in the lower compressive strength at early age. The 

effect is not pronounced in the wet bottom fly ash, 13F fly ash. After 7 days, the rate 

of strength gain of high strength fly ash concrete returns to what would normally be 
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expected. The compressive strength of fly ash concrete is considered to be high 

strength after 7 days since the compressive strength is over 6000 psi. The strength 

variation of high strength fly ash concrete with 25% replacement of 13F fly ash varies 

from 1782 psi at 1 day to 10748 psi at 180 days. The greater use of fly ash gives lower 

compressive strength at the early ages up to 14 days. After 90 days, concrete with 

higher fly ash content produces higher strength than the concrete with a lower fly ash 

content. In general, the strength of fly ash concrete using 13F fly ash is higher than 

the concrete utilizing 3F fly ash. 

Before 7 days, the highest strength is found in the samples with silica fume in 

the mix. After 14 days, sample CSF15 and C13F15 almost have the same strength 

about 7800 psi. At 28 days of curing, high strength concretes using fly ash as a 

replacement produced a stronger concrete than for either the control or the silica 

fume concrete. The strength of samples C13F15, C13F25, and C3F25 are 8740 psi, 

8561 psi, and 8648 psi, respectively or 110.8%, 108.6%, and 109.7% compared with 

the control strength. As the age increases, the strengths of fly ash concrete also 

increase. At 90 days, the compressive strengths of fly ash concrete are 107% to 

115% of the control concrete. 

It is interesting to note that the compressive strength of concrete made with 

silica fume (both 15% and 25% replacement) have almost the same strength as the 

control strength at the age of 90 days. These strengths range from 9100 psi to 9300 

psi. It is obvious that the silica fume in concrete reacts faster than fly ash and control 

concrete but the rate becomes slow after 7 days. Figures 5.63 and 5.64 confirm the 

behavior of high strength silica fume concrete. 

5.17 Bending Strength (Modulus of Rupture) of Fly Ash Concrete 

In this experiment, the objective is to find the relationship between the bending 

strength of fly ash concrete and its compressive strength. Fly ash concrete with 25% 
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replacement of cement was mixed and cast to make concrete beam. Control mix, 

BCON, is the concrete without any fly ash was also mixed and cast at the same days 

and cured in the same environment of the fly ash concrete beams. Samples BHUD 

and BMER are the concrete with 25% replacement of the original feed of dry and 

wet bottom fly ashes, respectively by weight of cementitious materials. Each sample 

consists of 4 beams and 12 cylinders. At each test date, 2 beams and 6 cylinders are 

used. The beams were used for testing the bending strengths. Three cylinders are 

used for evaluating the compressive strength and the other 3 cylinders are for 

determining the splitting tensile strength. 

Table 5.54 shows the bending strength of fly ash concrete beam together with 

the splitting and compressive strength. In general, the bending strength increases 

with the increase in compressive strength. This result is also reported by 

Ravindrarajah and Tam (1989). The bending strengths of fly ash and plain concrete 

beams are in the range of 8.7% to 10.1% compared to their compressive strengths. 

Table 5.54 Bending, Splitting, and Compressive Strength of Fly Ash Concrete 

Sam 
No. 

Age 
(Day) 

Comp 
(psi) 

Splitting 
(psi) 

Bending 
(psi) 

Percentage 
(Splitting) 

of Comp. 
(Bending) 

BCON 28 7051 860 709 12.2 10.1 
BHUD 28 6318 787 614 12.5 9.7 
BMER 28 6017 742 591 12.3 9.8 

BCON 90 7759 912 734 11.8 9.5 
BHUD 90 7427 852 643 11.5 8.7 
BMER 90 7602 867 678 11.4 8.9 

The splitting tensile strengths of fly ash concrete beams depend on the 

compressive strength. The splitting strength is slightly higher than that of the 

bending strength. It varies from 11.4% to 12.5% of the compressive strength. These 

values of splitting strength are very close to the results that reported by Giaccio and 
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Malhotra (1988). They concluded that the tensile strengths of fly ash concrete 

measured by the splitting test are about 10% of the 28-day compressive strength. At 

the age of 90 days, the percentage of splitting and bending strengths are slightly 

lower than those at 28 days. It can be concluded that the bending and splitting 

strength of fly ash concrete can be estimated in the same way of the plain concrete. 

5.18 Relationship between Compressive Strength and Tensile Strength of 

Fractionated Fly Ash Concrete 

In addition to compressive strength of fractionated fly ash concrete, tensile strengths 

by splitting test are also determined. The fractionated fly ash concrete with 15%, 

25%, 35%, and 50% replacement of cement by weight of cementitious materials are 

tested for their tensile strength at the age of 180 days. Two hundred cylinder 

samples are tested for both compression and splitting. The results are shown in 

Figure 5.65. It is seen that the splitting tensile strength of fractionated fly ash 

concrete increases with the increase of the compressive strength. A suitable way to 

express the splitting tensile strength of concrete is as a percentage of its compressive 

strength. Figure 5.66 is the relationship between the compressive strength and the 

percentage of splitting tensile strength as compare with the compressive strength. 

The results yield an average value for the splitting strength of 11.8% of the 

compressive strength. The maximum and minimum values are 14.13% and 8.61% 

respectively, with standard deviation of 1.18%. In general, the tensile strength of 

concrete by splitting test is about 10% of the compressive strength (Giaccio and 

Malhotra 1988). So, it can be concluded that the use of fly ash in concrete does not 

change the tensile characteristics. 
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Figure 5.65 Relationship between Compressive Strength and 
Splitting Tensile Strength 

Figure 5.66 Relationship between Compressive Strength and Percentage Splitting 
Tensile Strength as Compared with the Compressive Strength 
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5.19 Modulus of Elasticity of Fractionated Fly ash Concrete 

The modulus of elasticity (Ec) in this experiment is the slope of the stress-strain 

curve of fractionated fly ash concrete. The Ec  values are obtained at 40% of f ' c  

since at that point the curve is still the straight line. The typical stress-strain curve is 

presented in Figure 5.67. More than 660 samples testing of modulus of elasticity of 

fractionated fly ash and control concrete were collected. The lowest strength was 

2079 psi in 1CC50 at 7 days and the highest strength was 11201 psi in 13FC15 at 180 

days. 

Figure 5.68 shows that the modulus of elasticity of fractionated fly ash 

concrete lowers than the suggested formula given by ACI 318-89 (1990). The 

relation of square root of maximum compressive strength and modulus of elasticity 

of fractionated fly ash concrete by linear regression can be expressed as: 

Ec (psi) = 45000 √f ' c  

The formula given by ACI 318-89 (1990) is: 

Ec (psi) = 57000 √f ' c  

where f ' c  in psi 

The modulus of elasticity of fly ash concrete is the same (Ghosh and Timusk 

1981; Ravindrarajah and Tam 1989) or slightly lower (Lane and Best 1982; Ukita 

and Ishii 1991) than the concrete without fly ash. The results here suggest that the 

modulus of elasticity of high strength fly ash concrete is not changed with the 

replacement of fly ash but rather changed with the maximum compressive strength. 

The lower values may be due to the test set up and the test specimens. For the 

suggested value by ACI 318-89 (1990), the 6x12 cylinder is used to determine the Ec. 

The tests here use the 3x6 cylinder as a test specimen. Another reason for low values 

of Ec  is that the cover plates of the test set up  may tilt during testing and gives a 

higher value of strain which results in the lower value of Ec. 
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Figure 5.67 Typical Stress-Strain Curve of Fractionated Fly Ash Concrete 

Figure 5.68 Relation between Modulus of Elasticity and Square Root of Maximum 
Compressive Strength of Fractionated Fly Ash Concrete 
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To get rid of this error, a new set up is used to determined the modulus of 

elasticity of fly ash concrete. With this set up, the deformation of fly ash concrete is 

measured based on the point which is attacked on the surface of the concrete. The 

result obtained by this set up is also presented in Figure 5.67. With the maximum 

compressive strength of 12060 psi, the modulus of elasticity is 5.72x106  psi or 

increases 17.3% compared to the value obtained by the old set up. This value is 

comparable to the modulus of elasticity suggested by ACI 363 (1990) which is about 

40000√f ' c  + 1.0x106  psi or 5.39x106  psi. 

The deviation from predicting of modulus of elasticity is highly dependent on 

the properties and proportions of the coarse aggregates (ACI 363 1990). 

Sivasundaram, Carette, and Malhotra (1989) reported that the modulus value of fly 

ash concretes were 15 to 20% higher than that of a conventional limestone concrete 

of comparable strength. 

5.20 Corrosion Resistance of Fly Ash Mortar  

Fractionated fly ashes, 6F, 16F, the original feed of dry bottom fly ash (DRY), and 

wet bottom fly ash (WET) are mixed with cement to form the fly ash cement mortar. 

Standard 2-inch cubes were cast and cured in saturated lime water about 60 days 

before being put into the acid pond. The mix proportions used are tabulated in 

Table 4.5. The percentage of fly ash used in the mixes was 25 and 50 percent by 

weight of cementitious materials. The water to cementitious materials ratio of all 

mixes was kept constant at 0.5. No other admixtures were used in this program. Fly 

ash cement-mortar samples and the control samples (no fly ash) were then immersed 

in the H2SO4  acid solution with a concentration of 100 ml/l. All samples were kept 

under the same corrosive environment until the day of testing. To evaluate the 

extent of the damage caused by acid attack, the samples were removed from the acid 
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pond and washed with tap water. The samples were then weighed at the saturated 

surface thy condition. The weight loss will then be determined as compared to the 

weight of original sample recorded earlier. Sample designated "CF" is the control 

mix which contains no fly ash in the mix. The number "25" and "50" stand for the 

percentage of cement replaced by fly ash. 

The weights of sample at different age after being submerged in the 

concentrated 100 ml/l of H2SO4  solution are tabulated in Table 5.55 The 

compressive strengths of fly ash mortars prior to being immersed in 

H2SO4 

 solution 

are also presented in this table. For the normal cement samples, the corrosion due 

to acid attack is rather obvious. The weight losses of this control sample is 30% at 7 

days and 67% at 21 days. This rate of decay on the integrity of cement mortar is 

rather alarming. It seems that the free lime or calcium hydroxide in the cement 

control sample is rather vulnerable to the acid attack. Can fly ash tie up these 

calcium hydroxide compounds and prevent them from being attacked from the 

sulfuric acid? The results presented in Table 5.55 indicate that the 25% fly ash 

mortar samples sustained similar damage as the control cement sample, but with a 

little lesser extent regardless of the type of fly ash or its particle size. However, for 

high volume fly ash samples, the extent of weight loss was significantly reduced to 

practically 0% at 7 days and only 6% at the age of 21 days. Once again, the type of 

fly ash and its particle size play no significant role on the corrosion resistance of fly 

ash mortar. Figures 5.69 and 5.70 are the relationship between the weight loss of the 

samples and immersed time for the 25% and 50% replacement fly ash mortar. At 

the age of 30 days, Figure 5.70 shows the influence of particle size of fly ash on the 

corrosion resistance. The original feed of fly ash seems to sustain more damage than 

the fractionated 15-micron ash samples (6FC50 and 16FC50). Figure 5.71 shows the 

remains of the fly ash mortar samples after being immersed in the 

H2SO4 

 for 30 

days. Control and fly ash mortar samples which have 25% of fly ash in the mix show 
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severe loss of weight due to acid attack by the 100 ml/l H2SO4  solution. With 50 

percent fly ash in the mix, the attack is much less effective than on the control and 

the 25 percent fly ash cement samples. Consider in terms of compressive strength, 

the samples with 25% cement replacement gives a higher compressive strength than 

the 50% one. Based on the compressive strength, we can divide the samples into 2 

groups. The first is the control and the 25% fly ash samples which have the 

compressive strength more than 9000 psi and the second group of the 50% fly ash 

mortar samples which have strength below 6500 psi. It can be seen that the 

compressive strength of the sample is not the correct measured parameter which can 

indicate the ability of the cement-based composites in resisting acid attack. But 

rather, it is the amount of fly ash in the mix that governs the resistance. From our 

investigation, it seems that the limit of fly ash content to provide a reasonable 

corrosion resistance against acid attack is about 35%. This is believed that the 

resistance was a result of Ca(OH)2  being tied up by the pozzolanic content in the fly 

ash which reacts to form a more stable C-S-H. 

Table 5.55 Effect of Fly Ash Cement Mortar in H

2SO4 

 100 ml/l 

Sample 
No. 

Weight at Different Ages (g) Comp. 

0-day 1-day 3-day 7-day 14-day 21-day 30-day (psi) 

CF 301.7 289.3 262.2 206.5 139.5 100.1 69.9 9972 

DRY25 297.1 287.0 263.0 212.7 166.5 125.5 92.7 9121 
WET25 297.8 286.8 260.7 212.3 164.6 122.1 89.3 9250 
6F25 299.6 287.6 260.3 208.6 153.4 110.6 79.2 9415 
16F25 297.0 284.6 255.5 197.7 135.4 90.6 60.9 9311 

DRY50 295.8 295.4 293.6 289.5 280.1 276.8 257.8 5435 
WET50 291.9 291.8 291.3 291.1 291.3 276.8 233.5 6535 
6F50 294.8 294.7 294.8 293.6 294.3 292.6 287.2 5560 
16F50 298.3 298.2 298.0 298.2 298.5 290.8 269.3 6487 
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Figure 5.69 Relationship between the Weight of Fly Ash Mortar Samples and 
Immersed Time When Using Fly Ash 25% as Cement Replacement 

Figure 5.70 Relationship between the Weight of Fly Ash Mortar Samples and 
Immersed Time When Using Fly Ash 50% as Cement Replacement 



Figure 5.71 Fly Ash Mortar After Immersed in H2SO4  for 30 Days 

5.21 Fly Ash Concrete Strength Model 

In this study, fly ash concrete strength model is proposed. To avoid the influence of 

water, cement, fine and coarse aggregate, ect, which affect the strength, the 

compressive strength of fly ash concrete is predicted based on the control strength. 

The control strength concrete is obtained from the concrete that has the same 

conditions as fly ash concrete, i.e., water to cementitious materials ratio, curing 

condition, type of aggregates. The only difference in the control and fly ash concrete 

mix is the cement in the control concrete being replaced by the fly ash. The 

parameters needed for this model consist of the fineness modulus of fly ash, age of 

162 



163  

concrete, the amount of cement being replaced by fly ash, and the strength of the 

control concrete. 

5.21.1 Fineness Modulus of Fly Ash (FM) 

Fineness modulus of fly ash (FM) is defined as the summation of the percentage of 

fly ash that retains on the following sieve sizes; 0, 1, 1.5, 2, 3, 5, 10, 20, 45, 75, 150, 

300, and 600 microns. In general, a little fly ash retains on the sieve with the opening 

size larger than 600 microns. The fineness modulus of fly ash has no unit. The 

number of fineness modulus indicates how fine of the fly ash compared to other fly 

ashes. The fineness modulus of fractionated of dry and wet bottom fly ashes are 

presented in Tables 5.56 and 5.57, respectively. The fineness modulus of 

fractionated fly ashes is between 300 to 900. Fly ash 13F has the lowest fineness 

modulus (the finest fly ash) and 1C has the highest fineness modulus (the coarsest fly 

ash). 

Table 5.56 Fineness Modulus of the Fractionated of Dry Bottom Fly Ashes 

Opening 

(Micron) 3F 6F 10F 11F 1C DRY 

300 0 0 0 0 1 0 
150 0 0 0 0 4 1 
75 0 0 0 0 17 8 
45 0 0 0 1 44 20 
20 0 0 5 20 80 40 
10 0 5 60 82 99 55 
5 10 53 94 96 100 70 
3 35 78 96 97 100 80 
2 55 83 97 98 100 87 
1.5 75 90 97 100 100 92 
1 93 94 98 100 100 95 
0 100 100 100 100 100 100 

FM 368 503 647 694 845 648 
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When fly ash is used as a replacement of cement with the same quantity: the 

lower of the fineness modulus of fly ash, the higher the compressive strength. 

Fineness modulus of fly ash gives more consistent results on compressive strength of 

concrete than the Blaine fineness and the residue on sieve No. 325. Concrete with 

10F fly ash (Blaine 2028 cm2/g) gives higher strength than concrete with the original 

feed of dry bottom fly ash (Blaine 3235 cm2/g). Fly ashes 3F, 6F, and 10F have zero 

value retained on sieve on sieve No. 325. Thus these two methods are not suitable to 

measure the fineness of fractionated fly ash. By using the fineness modulus of fly 

ash, it gives more reliable results on the compressive strength of fly ash concrete.. 

Table 5.57 Fineness Modulus of the Fractionated of Wet Bottom Fly Ashes 

Opening 

(Micron) 13F 15F 16F 18F 18C WET 

300 0 0 0 0 0 0 
150 0 0 0 0 3 2 
75 0 0 0 0 10 5 
45 0 0 0 0 30 10 
20 0 0 0 6 70 20 
10 0 3 10 39 96 35 
5 6 30 49 80 100 55 
3 35 56 73 86 100 70 
2 49 69 82 89 100 80 
1.5 68 82 88 93 100 88 
1 82 90 92 94 100 97 
0 100 100 100 100 100 100 

FM 340 430 494 587 809 562 

5.21.2 Fly Ash Concrete Strength Model 

The proposed of fly ash concrete strength model is in the form of: 

σ(%) = σc + σFA 	(5.1) 

σ(%) is the percentage compressive strength of fly ash concrete compared to 

control concrete. 
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σc  is the percentage compressive strength of concrete contributed by cement 

in the concrete mix which equals to: 

σc  = 0.010C2 	 (5.2) 

where C is the percentage of cement in the cementitious materials 

σFA  is the contribution strength by the pozzolanic reaction between fly ash 

and cement at any age and 

σFA  = A + (B/FM) In (T) 	 (5.3) 

where A is a constant for the contribution of fineness of fly ash to the strength of 

concrete. For dry and wet bottom fly ashes, this constant is expressed as: 

A = 6.74 - 0.00528FM 	 (5.4) 

FM is the fineness modulus of fly ash 

B is the constant for the pozzolanic activity rate between fly ash and cement 

for any mix proportion. Constant B depends on the fly ash content in the mix. With 

higher fly ash content, this constant is higher than the lower content of fly ash in the 

mix. The constant B can be obtained from Figure 5.72. For fly ash content between 

10% to 50% by weight of cementitious materials, the constant B can be expressed by 

B = [1685 + 126C - 1.324C2] 	 (5.5) 

T is the age of concrete (day) 

The final form of the fly ash concrete strength model is 

σ(%) = 0.010C2+ [6.74-0.00528FM] + {B/FM[ln(T)]} 	(5.6) 

For fly ash content in concrete mix between 10% to 50%, equation (5.6) can 

also expressed as 

σ ( % ) = 0.010C2+ [6.74-0.00528FM] + {(1685+126C-1.324C2)/(FM)[ln(T)]} (5.7) 

After the percentage compressive strength of fly ash concrete is determined, 

the compressive strength of fly ash concrete is converted by multiply the control 

strength at that age with the percent compressive strength of fly ash concrete 

obtained from the model. Age of concrete, T, is varied from 1 day to 1000 days since 
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after 1100 days (3 years), the strength of fly ash concrete incrases a little (Hensen 

1990). 

Figure 5.72 Relationship between Cement Content and Constant B  

5.213 Prediction of Compressive Strength of the Fractionated of Dry Bottom Fly 

Ash Concrete 

Tables 5.58 to 5.63 show the results of compressive strength of the fractionated of 

dry bottom fly ash concrete from experiment and from the prediction of the 

proposed model. Figures 5.73 to 5.76 show the results that predicted by model of the 

original feed of dry bottom fly ash when uses fly ash 15%, 25%, 35%, and 50% as a 

cement replacement. The prediction of compressive strengths of the fractionated 6F 

fly ash are shown in Figures 5.77 to 5.80. The other predictions of the fractionated of 

dry bottom fly ash concrete are shown in Figures A 1 to A 24 in Appendix A. The 

results here give a very good prediction of the fractionated fly ash concrete strength. 
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Table 5.58 Compressive Strength of Fly Ash Concrete from Experiment and from 
the Proposed Model for 3F Fly Ash 

AGE 
3FC15 MODEL 3FC25 MODEL 3F35C MODEL 3FC50 MODEL 

1 1721 1647 1510 1304 1136 1003 567 634 
7 5946 5696 5280 4986 4606 4313 3026 3374 
14 7189 6902 6494 6205 5531 5514 4142 4492 
28 8318 8319 7686 7654 6602 6957 5074 5850 
56 9129 9344 8567 8775 7483 8128 6400 7011 
90 9888 10203 9502 9704 8406 9091 7246 7958 
180 11100 11816 10731 11429 10080 10865 8639 9689 

Table 5.59 Compressive Strength of Fly Ash Concrete from Experiment and from 
the Proposed Model for 6F Fly Ash 

AGE 
6F FLY ASH, FINENESS MODULUS = 503 

6FC15 	MODEL 6FC25 MODEL 6F35C MODEL 6FC50 MODEL 

1 1718 	1632 1485 	1288 988 	988 434 	618 
7 5746 	5401 4816 	4615 4222 	3890 2682 	2916 
14 6887 	6463 5842 	5647 5324 	4875 3521 	3799 
28 7946 	7700 7058 	6865 6378 	6050 4397 	4865 
56 8949 	8559 8122 	7770 7246 	6971 5155 	5754 
90 9484 	9284 8785 	8526 8001 	7733 5839 	6482 
180 10606 	10655 9974 	9938 9451 	9145 7823 	7817 

Table 5.60 Compressive Strength of Fly Ash Concrete from Experiment and from 
the Proposed Model for 10F Fly Ash 

AGE 
10F FLY ASH, FINENESS MODULUS = 647 

1 1673 	1616 1447 	1272 888 	972 425 	602 
7 5670 	5202 4735 	4370 3913 	3613 2649 	2618 
14 6477 	6172 5620 	5285 4838 	4464 3140 	3355 
28 7541 	7298 6691 	6359 5766 	5473 3857 	4241 
56 8414 	8054 7719 	7132 6466 	6241 4527 	4963 
90 9010 	8696 8367 	7781 7137 	6880 5271 	5556 
180 10339 	9917 9315 	8999 8401 	8069 7069 	6648 
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Table 5.61 Compressive Strength of Fly Ash Concrete from Experiment and from 
the Proposed Model for 11F Fly Ash 

AGE 

1 1667 1610 1390 1266 882 966 411 596 
7 5550 5147 4633 4304 3739 3539 2382 2538 
14 6430 6094 5566 5189 4768 4355 2991 3238 
28 7350 7191 6582 6227 5613 5322 3748 4078 
56 8139 7921 7389 6966 6217 6052 4442 4758 
90 8723 8542 8111 7587 6859 6659 5044 5317 
180 9850 9725 9109 8757 8031 7791 6666 6348 

Table 5.62 Compressive Strength of Fly Ash Concrete from Experiment and from 
the Proposed Model for 1C Fly Ash 

AGE 
1CC FLY ASH, FINENESS MODULUS = 845 

1CC15 MODEL 1CC25 	MODEL 1CC35 MODEL 1CC50 	MODEL 

1 1598 	1593 1369 	1249 860 	949 407 	579 
7 5416 	5012 4542 	4142 3567 	3359 2110 	2347 
14 6411 	5905 5400 	4959 4501 	4097 2692 	2961 
28 6971 	6934 6360 	5911 5240 	4966 3334 	3695 
56 7889 	7604 7001 	6573 5691 	5607 3976 	4278 
90 8259 	8176 7521 	7132 6200 	6142 4340 	4759 
180 9269 	9271 8348 	8188 7242 	7144 5578 	5649 

Table 5.63 Compressive Strength of Fly Ash Concrete from Experiment and from 
the Proposed Model for the Original Feed of Dry Bottom Fly Ash 

AGE 
ORIGINAL FEED FLY ASH, FINENESS MODULUS = 648 

CDRY15 MODEL CDRY25 MODEL CDRY35 MODEL CDRY50 MODEL 

1 1622 	1615 1390 	1272 906 	972 410 	602 
7 5525 	5201 4593 	4368 3895 	3611 2405 	2616 
14 6479 	6171 5492 	5283 4696 	4461 3041 	3352 
28 7440 	7296 6598 	6357 5798 	5470 3782 	4237 
56 8300 	8051 7390 	7129 6440 	6237 4466 	4958 
90 8943 	8693 8044 	7776 7189 	6875 5054 	5551 
180 10083 	9913 9070 	8994 8389 	8063 6857 	6642 
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Figure 5.73 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (15% Replacement) 

Figure 5.74 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (25% Replacement) 
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Figure 5.75 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (35% Replacement) 

Figure 5.76 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (50% Replacement) 
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Figure 5.77 Compressive Strength of the Fractionated 6F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure 5.78 Compressive Strength of the Fractionated 6F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure 5.79 Compressive Strength of the Fractionated 6F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure 5.80 Compressive Strength of the Fractionated 6F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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5.21.4 Prediction of Compressive Strength of the Fractionated of Wet Bottom Fly 

Ash Concrete 

Regardless of the type of boiler use for burning coal to produce fly ash, the equation 

(5.7) also gives a very close prediction on the compressive strengths of the 

fractionated of wet bottom fly ash concrete. Figures 5.81 to 5.84 show the results of 

compressive strength of the original feed of wet bottom fly ash concrete and the 

proposed model when use fly ash 15%, 25%, 35%, and 50% as a replacement of 

cement. The predictions of compressive strengths of the fractionated 16F fly ash 

concrete by the proposed equation are shown in Figures 5.85 to 5.88. The other 

predictions of the fractionated of wet bottom fly ash concrete are shown in Figures A 

25 to A 48 in Appendix A. 

Figure 5.81 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (15% Replacement) 
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Figure 5.82 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (25% Replacement) 

Figure 5.83 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (35% Replacement) 
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Figure 5.84 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (50% Replacement) 

Figure 5.85 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 



176  

Figure 5.86 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 

Figure 5.87 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 
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Figure 5.88 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 

5.21.5 Prediction of Fly Ash Concrete Strength from Other Researchers 

To verify the model, several data from different researchers are used to predict the 

compressive strength of fly ash concrete. Figures 5.89 to 5.94 show some comparison 

between the results from other researchers and the proposed model. Completed 

results are shown in Figures A 49 to A 67 in Appendix A. It is seen that the 

proposed model gives a very close result to predict the compressive strength of fly 

ash concrete with an error less than about 10%. The error is due to the difficulty to 

obtain the fineness modulus of fly ash used in those data. The fineness modulus of 

other researcher fly ash is obtained based on the Blaine fineness. The Blaine 

fineness is related to the fineness modulus of fly ash as shown in Figure 5.95. 
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Figure 5.89 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Olek and Diamond (1989) and from the Proposed Model 

Figure 5.90 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita and Ishii (1991) and from the Proposed Model 
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Figure 5.91 Comparison between the Compressive Strength of Fly Ash 
Concrete Obtained from Sivasundaram, Carette, and Malhotra (1989) 

and from the Proposed Model 

Figure 5.92 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Dahl and Meland (1989) and from the Proposed Model 
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Figure 5.93 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

Figure 5.94 Comparison between the Compressive Strength of Fly Ash 
Concrete Obtained from Malhotra, Carette, and Bremner (1988) 

and from the Proposed Model 
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Figure 5.95 Relationship between Blaine Fineness and Finepess Modulus of Fly Ash 
[Blaine = 26820 - 62.2FM - 0.038FM2] 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 

6.1 Conclusions on Physical and Chemical Properties of Fly Ash 

1. There is almost no variation in the chemical composition of fly ashes as a 

result of the weathering process. 

2. The chemical composition of fractionated fly ashes varies slightly when fly 

ashes are separated into different particle sizes with LOI and sulfate contents 

being the two parameters slightly affected by the fractionated process. 

3. The specific gravity of the original feed of wet bottom fly ash is higher than 

that of the dry bottom fly ash. For the same type of fly ash, the finer the 

average particle size, the higher is the specific gravity of fly ash. 

4. The average particle size of the original feed of wet bottom fly ash is much 

finer than that of the original feed of dry bottom fly ash. 

5. Fineness of fly ash is better measured by the fineness modulus of fly ash since 

it gives more consistent results for the compressive strength than the Blaine 

fineness and the residue retained on sieve No. 325. 

6.2 Conclusions on Setting Times of Fly Ash-Cement Paste 

1. The presence of fly ash prolongs the setting times. For the same quantity of 

fly ash in a cement-fly ash paste, the weathered fly ash has longer setting 

times than the dry fly ash. 

2. The setting times of fractionated fly ash cement paste vary with the particle 

size. The smaller size of fly ash seems to set faster than the coarser one. 

6.3 Conclusions on Fly Ash Mortar with the Dry and Weathered Fly Ashes 

1. 	As a cement replacement, weathered fly ash mortar exhibits lower 
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compressive strength than the dry fly ash. After 180 days, the replacement 

with the dry fly ash or weathered fly ash up to 30% gives the same 

compressive strength as the control mortar. 

2. The addition of fly ash to mortar gives higher compressive strength than the 

control mortar. The optimum addition of the dry fly ash is about 20% of 

cement and about 30% for the weathered fly ash. 

3. The 2 months of simulated weathering of the H fly ash for use in cement 

mortar does not seem to have any affect on the strength of mortar when used 

as a 15% replacement of cement. 

4. The presence of dispersing agent made the fresh mortar more workable than 

for the specimen without dispersing agent. Fly ash mortars with dispersing 

agent are very weak at the age of 1 day. The effect may be because the 

dispersing agent retards the hardening of mortar. 

6.4 Conclusions on the Effect of Fly Ash and Kiln Dust 

1. With the same mix proportion, the compressive strength of fly ash-kiln dust 

mortar from the dry fly ash is higher than that from the weathered fly ash. 

2. At early ages (1 to 3 days), the compressive strength of fly ash-kiln dust paste 

is higher with the higher percentage of kiln dust in the mix. At 28 days, the 

optimum mix is the WK30 series (fly ash 30% and kiln dust 70%) with the 

compressive strength of 3023 psi. 

3. Samples with high fly ash content, WK70, WK80, and WK90, had very weak 

strengths that were very weak and disintegrated in water. 

6.5 Conclusions on the Effect of Cement-Fly Ash-Kiln Dust Mortar 

1. 	The use of the dry fly ash gives higher strength than the use of the weathered 

fly ash in cement-fly ash-kiln dust paste. 
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2. The higher the cement content in the mix, the higher the compressive 

strength of the cement-fly ash-kiln dust mortar. 

3. For mixes with a constant amount of cement, the proportion of fly ash and 

kiln dust must be adjusted to obtain the optimum compressive strength. For 

20% constant cement content in cementitious materials, the optimum mix has 

40% fly ash and 40% kiln dust. For 40% constant cement content, the 

optimum mix has 40% fly ash and 20% kiln dust. And for the 60% constant 

cement content, the optimum mix contains 40% fly ash and no kiln dust. For 

the 80% constant cement content, the optimum mix is with 20% of fly ash and 

no kiln dust. 

4. The lower the cement content, the longer the setting time of the cement-fly 

ash-kiln dust paste. Kiln dust, which has some cementing material properties, 

accelerates setting time. When the cement content is constant, the paste with 

higher percentage of kiln dust has a shorter setting time than the paste with 

less kiln dust. 

6.6 Conclusions on Soaked and Washed Fly Ashes 

1. The 15% replacement of soaked or washed fly ash gives the compressive 

strength of mortar higher than the control strength after 90 days. With the 

same amount of replacement of soaked or washed fly ash, the compressive 

strength of fly ash mortar is almost the same. 

2. The addition of 15% of soaked or washed fly ash gives the same compressive 

strength. Generally, the addition of 25% by weight of cementitious materials 

of soaked or washed fly ashes, produces a higher strength than the addition of 

only 15% of the same fly ash at 180 days. 
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6.7 Conclusions on the Effect of Fractionated Fly Ash Concrete 

1. The workability of fresh fly ash concrete tends to reduce with the decrease of 

the average particle size of fly ash. 

2. The early strength of fractionated fly ash concrete is always lower than the 

control strength when fly ash is used as a replacement of cement. 

3. Fineness of fly ash is a very important factor affecting the rate of pozzolanic 

activity. Finer average particle size of fly ash gives a higher rate of pozzolanic 

reaction. 

4. The compressive strength of fractionated fly ash concrete is equal to or higher 

than the control strength after 14 days with the fine particles (samples 3FC15 

and 13FC15) used as a 15% replacement. With 25% replacement, it takes 

about 28 days for the sample of 13FC25 to gain the same strength as the 

control concrete, and takes at least 56 days for the sample 3FC25 to reach the 

control strength. With 35% replacement of 13FC35 and 3FC35 fly ash, the 

concrete needs 90 days and 180 days, respectively, to reach the same strength 

of the control concrete. The use of the coarsest fly ash, 1C, with 50% 

replacement of cement provides the compressive strength at 180 days of only 

54.9% of the control strength. 

6.8 Conclusions on the Effect of Fractionated Fly Ash Mortar 

1. The effect of fractionated fly ashes on the compressive strength of mortar is 

the same as concrete. The finer the particle size of fly ash in the mix, the 

higher the compressive strength. 

2. With 15% replacement of the fractionated 3F or 13F fly ash, the compressive 

strengths of fly ash mortar are equal to or higher than the control mortar at 

the age of 14 days. With 25% replacement, it takes 28 days and 56 days for 

13F and 3F fly ashes, respectively, to gain the same strength as the control 
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mortar. 

3. In general, the compressive strength of the original feed of wet bottom fly ash 

mortar is higher than that of the thy bottom fly ash mortar when used at the 

same mix proportions. 

6.9 Conclusions on the Corrosion Resistance of Fly Ash Mortar 

1. The type of fly ash does not seem to have any significant affect on corrosion 

resistance against acid attack. The wet bottom fly ash showed a slight better 

resistance than the dry bottom fly ash. 

2. The amount of fly ash needed to provide corrosion resistance is about 35% 

and or higher. The data presented here are for 50% samples only. With this 

high volume content of fly ash in the mix, the fly ash mortar samples exhibit 

excellent corrosion resistance against H2SO4  in particular. 

3. The compressive strength of mortar is not a correct measure for corrosion 

resistance to 

H2SO4

. It is rather the amount of fly ash in the mix which 

governs the corrosion resistance properties of the fly ash mortar. 

4. Finer particle fly ash tends to exhibit better corrosion resistance than the 

coarser particle ash when used in cement-based materials. 

6.10 Conclusions on High Strength Fly Ash and Silica Fume Concrete 

1. Concrete with silica fume gains strength faster at early ages than the fly ash 

and control concrete. This behavior can be attributed to the packing and a 

pozzolanic effect. Since the particle sizes of silica fume are very fine, they fill 

the voids in the fresh concrete and make the concrete denser and more 

compacted. 

2. The early strengths of high strength fly ash concrete are lower than the high 

strength of control and silica fume concrete but, after 28 days of curing, 
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strengths of fly ash concrete are higher than those of control high strength 

concrete. 

3. It is obvious that the silica fume in concrete reacts faster than fly ash and 

control concrete but the rate of strength gain becomes slower after 7 days. 

6.11 Conclusions on the Bending Strength of Fly Ash Concrete 

1. The bending strengths of both fly ash and plain concrete beams are in the 

range of 8.7% to 10.1% of the compressive strengths. 

2. The splitting tensile strength is slightly higher than that of the bending 

strength. It varies from 11.4% to 12.5% of the compressive strength. 

3. It can be concluded that the bending and splitting tensile strengths of fly ash 

concrete can be estimated in the same manner as plain concrete. 

6.12 Conclusions on the Fly Ash Concrete Strength Model 

1. The proposed fly ash concrete strength model is in the form of 

 σ(%) = 0.010C2+ [6.74-0.00528FM] + {(B/FM)ln(T)} 

where σ(%) is the percentage compressive strength of fly ash concrete 

compared to the control concrete, C is the percentage of cement in the 

cementitious materials, FM is the fineness modulus of fly ash, B is the 

constant of the pozzolanic activity rate between fly ash and cement, and T is 

the age of concrete. 

2. 

The results predicted by the model are in good agreement with the results of 

fractionated fly ash concrete obtained in this study and, other researchers. 

6.13 Suggestions for Future Work 

1. 	Study the effect of fractionated fly ash concrete to resist acid attack when the 

concrete is mixed with superplasticizer or water reducing agent. Also, study 
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the effect of fractionated fly ash concrete under attack by different kinds of 

acids. 

2. 

	

Study the effect of the single size of fly ash on the strength of concrete. This 

means that the fractionated fly ashes will have a very narrow particle size 

distribution. 



APPENDIX A  

Figure A 1 Compressive Strength of the Fractionated 3F Fly Ash Concrete Predicted 
by the Proposed Model (15% Replacement) 

Figure A 2 Compressive Strength of the Fractionated 3F Fly Ash Concrete Predicted 
by the Proposed Model (25% Replacement) 
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Figure A 3 Compressive Strength of the Fractionated 3F Fly Ash Concrete Predicted 
by the Proposed Model (35% Replacement) 

Figure A 4 Compressive Strength of the Fractionated 3F Fly Ash Concrete Predicted 
by the Proposed Model (50% Replacement) 
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Figure A 5 Compressive Strength of the Fractionated 6F Fly Ash Concrete Predicted 
by the Proposed Model (15% Replacement) 

Figure A 6 Compressive Strength of the Fractionated 6F Fly Ash Concrete Predicted 
by the Proposed Model (25% Replacement) 
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Figure A 7 Compressive Strength of the Fractionated 6F Fly Ash Concrete Predicted 
by the Proposed Model (35% Replacement) 

Figure A 8 Compressive Strength of the Fractionated 6F Fly Ash Concrete Predicted 
by the Proposed Model (50% Replacement) 
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Figure A 9 Compressive Strength of the Fractionated 10F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 10 Compressive Strength of the Fractionated 10F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 11 Compressive Strength of the Fractionated 10F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 12 Compressive Strength of the Fractionated 10F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 13 Compressive Strength of the Fractionated 11F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 14 Compressive Strength of the Fractionated 11F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 15 Compressive Strength of the Fractionated 11F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 16 Compressive Strength of the Fractionated 11F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 17 Compressive Strength of the Fractionated 1CC Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 18 Compressive Strength of the Fractionated 1CC Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 19 Compressive Strength of the Fractionated 1CC Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 20 Compressive Strength of the Fractionated 1CC Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 21 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (15% Replacement) 

Figure A 22 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (25% Replacement) 
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Figure A 23 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (35% Replacement) 

Figure A 24 Compressive Strength of the Original Feed of Dry Bottom Fly Ash 
Concrete Predicted by the Proposed Model (50% Replacement) 
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Figure A 25 Compressive Strength of the Fractionated 13F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 26 Compressive Strength of the Fractionated 13F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 27 Compressive Strength of the Fractionated 13F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 28 Compressive Strength of the Fractionated 13F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 29 Compressive Strength of the Fractionated 15F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 30 Compressive Strength of the Fractionated 15F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 31 Compressive Strength of the Fractionated 15F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 32 Compressive Strength of the Fractionated 15F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 33 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 34 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 35 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 36 Compressive Strength of the Fractionated 16F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 37 Compressive Strength of the Fractionated 18F Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 38 Compressive Strength of the Fractionated 18F Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 39 Compressive Strength of the Fractionated 18F Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 40 Compressive Strength of the Fractionated 18F Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 41 Compressive Strength of the Fractionated 18C Fly Ash Concrete 
Predicted by the Proposed Model (15% Replacement) 

Figure A 42 Compressive Strength of the Fractionated 18C Fly Ash Concrete 
Predicted by the Proposed Model (25% Replacement) 
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Figure A 43 Compressive Strength of the Fractionated 18C Fly Ash Concrete 
Predicted by the Proposed Model (35% Replacement) 

Figure A 44 Compressive Strength of the Fractionated 18C Fly Ash Concrete 
Predicted by the Proposed Model (50% Replacement) 
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Figure A 45 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (15% Replacement) 

Figure A 46 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (25% Replacement) 
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Figure A 47 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (35% Replacement) 

Figure A 48 Compressive Strength of the Original Feed of Wet Bottom Fly Ash 
Concrete Predicted by the Proposed Model (50% Replacement) 
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Figure A 49 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Olek and Diamond (1989) and from the Proposed Model 

(Fly Ash 15%, FM = 680) 

Figure A 50 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Olek and Diamond (1989) and from the Proposed Model 

(Fly Ash 15%, FM = 760) 
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Figure A 51 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Olek and Diamond (1989) and from the Proposed Model 

(Fly Ash 25%, FM = 680) 

Figure A 52 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Olek and Diamond (1989) and from the Proposed Model 

(Fly Ash 25%, FM = 760) 
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Figure A 53 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita and Ishii (1991) and from the Proposed Model 

(Fly Ash 10%, FM = 340) 

Figure A 54 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita and Ishii (1991) and from the Proposed Model 

(Fly Ash 20%, FM = 340) 



216  

Figure A 55 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita and Ishii (1991 and from the Proposed Model 

(Fly Ash 30%, M = 340) 

Figure A 56 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Sivasundaram, Carette, and Malhotra (1989) and from the Proposed 

Model (Fly Ash 42%, FM = 530) 
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Figure A 57 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Sivasundaram, Carette, and Malhotra (1989) and from the Proposed 

Model (Fly Ash 42%, FM = 570) 

Figure A 58 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Dahl and Meland (1989) and from the Proposed Model (Fly Ash 

20%, FM = 460) 
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Figure A 59 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 15%, FM = 580) 

Figure A 60 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 15%, FM = 480) 
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Figure A 61 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 15%, FM = 408) 

Figure A 62 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 15%, FM = 330) 
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Figure A 63 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 30%, FM = 580) 

Figure A 64 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 30%, FM = 480) 
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Figure A 65 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 30%, FM = 408) 

Figure A 66 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Ukita, Shigematsu, and Ishii (1989) and from the Proposed Model 

(Fly Ash 30%, FM = 330) 
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Figure A 67 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Malhotra, Carette, and Bremner (1988) and from the Proposed 

Model (Fly Ash 25%, FM = 540) 

Figure A 68 Comparison between the Compressive Strength of Fly Ash Concrete 
Obtained from Bilodeau, Carette, Malhotra, and Langley (1991) and from the 

Proposed Model (Fly Ash 30%, FM = 460) 
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