9 research outputs found

    Breast cancer prevention by short-term inhibition of TGFβ signaling.

    Full text link
    peer reviewedCancer prevention has a profound impact on cancer-associated mortality and morbidity. We previously identified TGFβ signaling as a candidate regulator of mammary epithelial cells associated with breast cancer risk. Here, we show that short-term TGFBR inhibitor (TGFBRi) treatment of peripubertal ACI inbred and Sprague Dawley outbred rats induces lasting changes and prevents estrogen- and carcinogen-induced mammary tumors, respectively. We identify TGFBRi-responsive cell populations by single cell RNA-sequencing, including a unique epithelial subpopulation designated secretory basal cells (SBCs) with progenitor features. We detect SBCs in normal human breast tissues and find them to be associated with breast cancer risk. Interactome analysis identifies SBCs as the most interactive cell population and the main source of insulin-IGF signaling. Accordingly, inhibition of TGFBR and IGF1R decrease proliferation of organoid cultures. Our results reveal a critical role for TGFβ in regulating mammary epithelial cells relevant to breast cancer and serve as a proof-of-principle cancer prevention strategy

    Myelin proteolipid protein-specific CD4(+)CD25(+) regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis

    Get PDF
    SJL mice are highly susceptible to experimental autoimmune encephalomyelitis (EAE) induced with myelin proteolipid protein (PLP) peptide 139-151, whereas H-2 congenic B10.S mice are resistant. Immunodominance and susceptibility to EAE are associated with a high precursor frequency of PLP 139-151-specific T cells in the naïve repertoire of SJL mice. To understand the mechanism of EAE resistance in B10.S mice, we determined the precursor frequency of PLP 139-151-reactive T cells in both strains by using IA(s)/PLP 139-151 tetramers. SJL and B10.S mice had similar frequencies of tetramer-reactive T cells in the naïve peripheral repertoire. However, in SJL mice, the majority of PLP 139-151 tetramer-positive cells were in the CD4(+)CD25(-) population, whereas there were more tetramer-positive cells in the CD4(+)CD25(+) population of B10.S mice. Depletion of CD4(+)CD25(+) cells in vivo facilitated the expansion of PLP 139-151-reactive cells with production of T helper 1 cytokines in EAE-resistant B10.S mice. Furthermore, anti-CD25 Ab treatment before immunization resulted in EAE induction in these otherwise resistant mice. These data indicate an important role for autoantigen-specific CD4(+)CD25(+) cells in genetic resistance to autoimmunity

    Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma

    No full text
    Personal neoantigen vaccines have been envisioned as an effective approach to induce, amplify, and diversify antitumor T cell responses. To define the long-term effects of such a vaccine, we evaluated the clinical outcome and circulating immune responses of 8 patients with surgically resected stage IIIB/C or IVM1a/b melanoma, at a median of almost 4 years after treatment with NeoVax, a long peptide vaccine targeting up to 20 personal neoantigens per patient. (NCT01970358). All patients were alive, 6 without evidence of active disease. We observed long-term persistence of neoantigen-specific T cell responses following vaccination, with ex vivo detection of neoantigen-specific T cells exhibiting a memory phenotype. We also found diversification of neoantigen-specific T cell clones over time, with emergence of multiple T cell receptor clonotypes exhibiting distinct functional avidities. Furthermore, we detected evidence of tumor infiltration by neoantigen-specific T cell clones after vaccination and epitope spreading, suggesting on-target vaccine-induced tumor cell killing. Personal neoantigen peptide vaccines thus induce T cell responses that persist over years and broaden the spectrum of tumor-specific cytotoxicity in patients with melanoma

    Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis

    No full text
    T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets
    corecore