36 research outputs found

    In Vitro Models in Biocompatibility Assessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    Get PDF
    One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (β-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing

    Chitosan Modification and Pharmaceutical/Biomedical Applications

    Get PDF
    Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1) enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2) the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3) synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy

    Clinical study of chitosan-derivative-based hemostat in the treatment of split-thickness donor sites

    No full text
    The hemostatic efficacy of a chitosan-derivative-based prototype was clinically evaluated in the treatment of split-thickness skin-graft donor sites in 17 patients, in comparison with two commercial materials. The test materials were placed randomly on the wound sites for 8 min. to stop the bleeding; the treated wounds were uncovered afterwards for evaluation. The total amount of blood loss in each treated wound was determined by measuring the blood absorbed in each used dressing. The bleeding area in each treated wound after an 8-min. treatment, was determined by wound image analysis. The amounts of blood loss measured from the wound sites treated with each material for 8 min. were found insignificantly different. However, from the visual observation and wound image analysis, the amount of blood ooze and the bleeding area after being left uncovered for 30, 60 and 90 sec. were significantly detected to be at a miniumum in wounds treated with the chitosan-derivative-based prototype, implying that the prototype could stop the bleeding most effectively

    Geranylgeraniol prevents zoledronic acid-mediated reduction of viable mesenchymal stem cells via induction of Rho-dependent YAP activation

    No full text
    Long-term use of zoledronic acid (ZA) increases the risk of medication-related osteonecrosis of the jaw (MRONJ). This may be attributed to ZA-mediated reduction of viable mesenchymal stem cells (MSCs). ZA inhibits protein geranylgeranylation, thus suppressing cell viability and proliferation. Geranylgeraniol (GGOH), which is a naturally found intermediate compound in the mevalonate pathway, has positive effects against ZA. However, precise mechanisms by which GGOH may help preserve stem cell viability against ZA are not fully understood. The objective of this study was to investigate the cytoprotective mechanisms of GGOH against ZA. The results showed that while ZA dramatically decreased the number of viable MSCs, GGOH prevented this negative effect. GGOH-rescued ZA-exposed MSCs formed mineralization comparable to that produced by normal MSCs. Mechanistically, GGOH preserved the number of viable MSCs by its reversal of ZA-mediated Ki67+ MSC number reduction, cell cycle arrest and apoptosis. Moreover, GGOH prevented ZA-suppressed RhoA activity and YAP activation. The results also established the involvement of Rho-dependent YAP and YAP-mediated CDK6 in the cytoprotective ability of GGOH against ZA. In conclusion, GGOH preserves a pool of viable MSCs with osteogenic potency against ZA by rescuing the activity of Rho-dependent YAP activation, suggesting GGOH as a promising agent and YAP as a potential therapeutic target for MRONJ

    Intrinsic Cellular Responses of Human Wharton’s Jelly Mesenchymal Stem Cells Influenced by O2-Plasma-Modified and Unmodified Surface of Alkaline-Hydrolyzed 2D and 3D PCL Scaffolds

    No full text
    Polycaprolactone (PCL), a hydrophobic-degradable polyester, has been widely investigated and extensively developed, to increase the biocompatibility for tissue engineering. This research was the first trial to evaluate the intrinsic biological responses of human Wharton’s Jelly Mesenchymal Stem Cells (hWJMSCs) cultured on alkaline hydrolysis and low-pressure oxygen plasma modified 2D and 3D PCL scaffolds, without adding any differentiation inducers; this has not been reported before. Four types of the substrate were newly established: 2D plasma-treated PCL (2D-TP), 2D non-plasma-treated PCL (2D-NP), 3D plasma-treated PCL (3D-TP), and 3D non-plasma-treated PCL (3D-NP). Physicochemical characterization revealed that only plasma-treated PCL scaffolds significantly increased the hydrophilicity and % oxygen/carbon ratio on the surfaces. The RMS roughness of 3D was higher than 2D conformation, whilst the plasma-treated surfaces were rougher than the non-plasma treated ones. The cytocompatibility test demonstrated that the 2D PCLs enhanced the initial cell attachment in comparison to the 3Ds, indicated by a higher expression of focal adhesion kinase. Meanwhile, the 3Ds promoted cell proliferation and migration as evidence of higher cyclin-A expression and filopodial protrusion, respectively. The 3Ds potentially protected the cell from apoptosis/necrosis but also altered the pluripotency/differentiation-related gene expression. In summary, the different configuration and surface properties of PCL scaffolds displayed the significant potential and effectiveness for facilitating stem cell growth and differentiation in vitro. The cell–substrate interactions on modified surface PCL may provide some information which could be further applied in substrate architecture for stem cell accommodation in cell delivery system for tissue repair
    corecore