8 research outputs found

    Activation-induced chromatin reorganization in neurons depends on HDAC1 activity

    Get PDF
    Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.publishedVersio

    Activation-induced chromatin reorganization in neurons depends on HDAC1 activity

    Get PDF
    Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.This work was supported by the National Science Centre grant nos. UMO-2015/18/E/NZ3/00730 (A.M., A.G., H.S.N., E.J. and Y.Y.), 2014/15/N/NZ2/00379 and 2017/24/T/NZ2/00307 (P.T.), 2019/35/O/ST6/02484 (D.P. and G.B.), and 2014/14/M/NZ4/00561 (K.H.O. and R.K.F.). B.W. and B.G. were supported by the Foundation for Polish Science TEAM-TECH Core Facility project “NGS platform for comprehensive diagnostics and personalized therapy in neuro-oncology,” Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (TEAM to D.P.). A.M.G. was supported by the H2020-MSCA-COFUND-2014 grant Bio4Med (GA no. 665735).Peer reviewe

    Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood-brain barrier

    No full text
    International audienceCarnitine β-hydroxy-γ-(trimethylammonio)butyrate – a compound necessary in the peripheral tissues for a transfer of fatty acids for their oxidation within the cell, accumulates in the brain despite low β-oxidation in this organ. In order to enter the brain, carnitine has to cross the blood-brain barrier formed by capillary endothelial cells which are in close interaction with astrocytes. Previous studies, demonstrating expression of mRNA coding two carnitine transporters – organic cation/carnitine transporter 2 (OCTN2) and B0,+ in endothelial cells, did not give any information on carnitine transporters polarity in endothelium. Therefore more detailed experiments were performed on expression and localization of a high affinity carnitine transporter OCTN2 in an in vitro model of the blood-brain barrier by real-time PCR, western blot analysis, and immunocytochemistry. The amount of mRNA was comparable in endothelial cells and kidney, when referred to housekeeping genes, it was, however, significantly lower in astrocytes. Polarity of OCTN2 localization was further studied in an in vitro model of the blood–brain barrier with use of anti-OCTN2 antibodies. Z-axis analysis of the confocal microscope pictures of endothelial cells, with anti-P-glycoprotein antibodies as the marker of apical membrane, showed OCTN2 localization at the basolateral membrane and in the cytoplasmic region in the vicinity of nuclei. Localization of OCTN2 suggest that carnitine can be also transported from the brain, playing an important role in removal of certain acyl esters

    Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol.

    Get PDF
    Most of the mitochondrial proteome originates from nuclear genes and is transported into the mitochondria after synthesis in the cytosol. Complex machineries which maintain the specificity of protein import and sorting include the TIM23 translocase responsible for the transfer of precursor proteins into the matrix, and the mitochondrial intermembrane space import and assembly (MIA) machinery required for the biogenesis of intermembrane space proteins. Dysfunction of mitochondrial protein sorting pathways results in diminishing specific substrate proteins, followed by systemic pathology of the organelle and organismal death. The cellular responses caused by accumulation of mitochondrial precursor proteins in the cytosol are mainly unknown. Here we present a comprehensive picture of the changes in the cellular transcriptome and proteome in response to a mitochondrial import defect and precursor over-accumulation stress. Pathways were identified that protect the cell against mitochondrial biogenesis defects by inhibiting protein synthesis and by activation of the proteasome, a major machine for cellular protein clearance. Proteasomal activity is modulated in proportion to the quantity of mislocalized mitochondrial precursor proteins in the cytosol. We propose that this type of unfolded protein response activated by mistargeting of proteins (UPRam) is beneficial for the cells. UPRam provides a means for buffering the consequences of physiological slowdown in mitochondrial protein import and for counteracting pathologies that are caused or contributed by mitochondrial dysfunction

    Management of hypertension in pregnancy — prevention, diagnosis, treatment and long-term prognosis. A position statement of the Polish Society of Hypertension, Polish Cardiac Society and Polish Society of Gynaecologists and Obstetricians

    Get PDF
    ADDITIONAL INFORMATION This article has been co‑published in Kardiologia Polska (doi:10.33963/KP.14904), Arterial Hypertension (doi:10.5603/AH.a2019.0011), and Ginekologia Polska (doi:10.5603/GP.2019.0074). The articles in Kardiologia Polska, Arterial Hypertension, and Ginekologia Polska are identical except for minor stylistic and spelling differences in keeping with each journal’s style. Any citation can be used when citing this article
    corecore