23 research outputs found

    B-Virus and Free-Ranging Macaques, Puerto Rico

    Get PDF
    In Puerto Rico, risk for transmission of B-virus from free-ranging rhesus monkeys to humans has become a serious challenge. An incident with an injured rhesus monkey, seropositive for B-virus, resulted in inappropriate administration of antiviral postexposure prophylaxis. This incident underscores the importance of education about risks associated with interactions between humans and nonhuman primates

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    SCN ablation eliminates intrinsic circadian patterns of activity and food intake in group-M.

    No full text
    <p><b>A</b> & <b>B</b> Double plots of continuous activity recording (left) and corresponding daily profiles (mean value per hour; right panel) of activity (black) and total food intake (red) in M2 before (A) and after (B) electrolytic ablation of the SCN. Black line in A (left plot) highlights the intrinsic free-running rhythm in CDL (τ = 24.3 h), with no such rhythm following the SCN ablation (B). <b>C</b> Similar plots during the period of restricted feeding (RF) in CDL, illustrating entrainment to 24-h period of food availability following SCN lesion. Blue line - onset of food access, black line - end of food access.</p

    Similarities between dynamic patterns of spontaneous circadian asynchrony and that following the SCNx in group-M.

    No full text
    <p>The dynamic changes in the power of intrinsic circadian and ultradian rhythms of activity in CDL are reflected in 3D time-by-frequency wavelet maps of a 70-h period of recording for a representative control (<b>A</b>), a group-M animal (M3) with intrinsic circadian asynchrony (<b>B</b>), and a group-M animal (M2) with initially preserved circadian rhythm (<b>C</b>), which was lost following SCN ablation (<b>D</b>). Red arrows point to circadian frequency (∼1 cycle per day). It is continuously present in control and intact M2 (A & C), with ultradian rhythms, especially those with a frequency of more than 6 cycles per day, being prevalent during the active period of subjective day (wavelet ridges: blue-red), and typically low or absent during subjective night (wavelet valleys: purple-black). In contrast, in animals with circadian asynchrony due to familial circadian disorder (B) or SCN ablation (D), the lack of circadian frequency is associated with frequent high-frequency wavelet ridges, which do not follow a circadian pattern. X axis – frequency (cycles per day), Y axis – time (h), Z axis – relative spectral power, reflecting the power of all detected frequencies being 100%, i.e., including those beyond what is shown on the X-axis.</p

    The intrinsic rhythms of activity and food intake in group-M under constant dim light conditions.

    No full text
    <p><b>A</b> Left: Stable intrinsic rhythm of activity in monkey M1, with intrinsic circadian period τ = 24.9 h (22 days, shown per Clock Time). Right: corresponding mean patterns of food intake and cognitive performance (mean data profiles, shown per hour of Circadian Time, with CT0 = onset of activity). Red arrow (right panel) - earlier onset of “food through cognitive test” intake, relative to “free-food intake”, reflecting high incidence of incomplete cognitive tests during the day. <b>B,D</b> Power spectrum of activity rhythms within the 0.5–5 cycles per day frequencies (100% = the sum of all the powers shown) for control, M1, M2 and M3. <b>C</b> Raw data recording over 22 days in monkey M3 (shown per Clock Time), illustrating intrinsic asynchrony. Color scheme as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033327#pone-0033327-g001" target="_blank">Fig. 1</a>.</p
    corecore