12 research outputs found

    Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe

    Get PDF
    There has been an increase in reported TBE cases in Europe since 2015, reaching a peak in some countries in 2020, highlighting the need for better management of TBE risk in Europe. TBE surveillance is currently limited, in part, due to varying diagnostic guidelines, access to testing, and awareness of TBE. Consequently, TBE prevalence is underestimated and vaccination recommendations inadequate. TBE vaccine uptake is unsatisfactory in many TBE-endemic European countries. This review summarizes the findings of a scientific workshop of experts to improve TBE surveillance and vaccine uptake in Europe. Strategies to improve TBE surveillance and vaccine uptake should focus on: aligning diagnostic criteria and testing across Europe; expanding current vaccine recommendations and reducing their complexity; and increasing public education of the potential risks posed by TBEV infection.Peer reviewe

    Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe

    Get PDF
    There has been an increase in reported TBE cases in Europe since 2015, reaching a peak in some countries in 2020, highlighting the need for better management of TBE risk in Europe. TBE surveillance is currently limited, in part, due to varying diagnostic guidelines, access to testing, and awareness of TBE. Consequently, TBE prevalence is underestimated and vaccination recommendations inadequate. TBE vaccine uptake is unsatisfactory in many TBE-endemic European countries. This review summarizes the findings of a scientific workshop of experts to improve TBE surveillance and vaccine uptake in Europe. Strategies to improve TBE surveillance and vaccine uptake should focus on: aligning diagnostic criteria and testing across Europe; expanding current vaccine recommendations and reducing their complexity; and increasing public education of the potential risks posed by TBEV infection.Peer reviewe

    Prevalence of chronic HCV infection in EU/EEA countries in 2019 using multiparameter evidence synthesis

    Get PDF
    Publisher Copyright: © 2023 The Author(s)Background: Epidemiological data are crucial to monitoring progress towards the 2030 Hepatitis C Virus (HCV) elimination targets. Our aim was to estimate the prevalence of chronic HCV infection (cHCV) in the European Union (EU)/European Economic Area (EEA) countries in 2019. Methods: Multi-parameter evidence synthesis (MPES) was used to produce national estimates of cHCV defined as: π = πrecρrec + πexρex + πnonρnon; πrec, πex, and πnon represent cHCV prevalence among recent people who inject drugs (PWID), ex-PWID, and non-PWID, respectively, while ρrec, ρex, and ρnon represent the proportions of these groups in the population. Information sources included the European Centre for Disease Prevention and Control (ECDC) national operational contact points (NCPs) and prevalence database, the European Monitoring Centre for Drugs and Drug Addiction databases, and the published literature. Findings: The cHCV prevalence in 29 of 30 EU/EEA countries in 2019 was 0.50% [95% Credible Interval (CrI): 0.46%, 0.55%]. The highest cHCV prevalence was observed in the eastern EU/EEA (0.88%; 95% CrI: 0.81%, 0.94%). At least 35.76% (95% CrI: 33.07%, 38.60%) of the overall cHCV prevalence in EU/EEA countries was associated with injecting drugs. Interpretation: Using MPES and collaborating with ECDC NCPs, we estimated the prevalence of cHCV in the EU/EEA to be low. Some areas experience higher cHCV prevalence while a third of prevalent cHCV infections was attributed to PWID. Further efforts are needed to scale up prevention measures and the diagnosis and treatment of infected individuals, especially in the east of the EU/EEA and among PWID. Funding: ECDC.Peer reviewe

    Co-Circulation of West Nile, Usutu, and Tick-Borne Encephalitis Viruses in the Same Area: A Great Challenge for Diagnostic and Blood and Organ Safety

    No full text
    Viral infections caused by viruses from the family Flaviviridae such as Zika (ZIKV), Dengue (DENV), yellow fever (YFV), tick-borne encephalitis (TBEV), West Nile (WNV), and Usutu (USUV) are some of the most challenging diseases for recognition in clinical diagnostics and epidemiological tracking thanks to their short viremia, non-specific symptoms, and high cross-reactivity observed in laboratory techniques. In Central Europe, the most relevant endemic flaviviruses are mosquito-borne WNV and USUV, and tick-borne TBEV. All three viruses have been recognised to be responsible for human neuroinvasive diseases. Moreover, they are interrupting the blood and transplantation safety processes, when the great efforts made to save a patient’s life could be defeated by acquired infection from donors. Due to the trend of changing distribution and abundance of flaviviruses and their vectors influenced by global change, the co-circulation of WNV, USUV, and TBEV can be observed in the same area. In this perspective, we discuss the problems of flavivirus diagnostics and epidemiology monitoring in Slovakia as a model area of Central Europe, where co-circulation of WNV, USUV, and TBEV in the same zone has been recently detected. This new situation presents multiple challenges not only for diagnostics or surveillance but particularly also for blood and organ safety. We conclude that the current routinely used laboratory diagnostics and donor screening applied by the European Union (EU) regulations are out of date and the novel methods which have become available in recent years, e.g., next-gene sequencing or urine screening should be implemented immediately

    Co-Circulation of West Nile, Usutu, and Tick-Borne Encephalitis Viruses in the Same Area: A Great Challenge for Diagnostic and Blood and Organ Safety

    No full text
    Viral infections caused by viruses from the family Flaviviridae such as Zika (ZIKV), Dengue (DENV), yellow fever (YFV), tick-borne encephalitis (TBEV), West Nile (WNV), and Usutu (USUV) are some of the most challenging diseases for recognition in clinical diagnostics and epidemiological tracking thanks to their short viremia, non-specific symptoms, and high cross-reactivity observed in laboratory techniques. In Central Europe, the most relevant endemic flaviviruses are mosquito-borne WNV and USUV, and tick-borne TBEV. All three viruses have been recognised to be responsible for human neuroinvasive diseases. Moreover, they are interrupting the blood and transplantation safety processes, when the great efforts made to save a patient’s life could be defeated by acquired infection from donors. Due to the trend of changing distribution and abundance of flaviviruses and their vectors influenced by global change, the co-circulation of WNV, USUV, and TBEV can be observed in the same area. In this perspective, we discuss the problems of flavivirus diagnostics and epidemiology monitoring in Slovakia as a model area of Central Europe, where co-circulation of WNV, USUV, and TBEV in the same zone has been recently detected. This new situation presents multiple challenges not only for diagnostics or surveillance but particularly also for blood and organ safety. We conclude that the current routinely used laboratory diagnostics and donor screening applied by the European Union (EU) regulations are out of date and the novel methods which have become available in recent years, e.g., next-gene sequencing or urine screening should be implemented immediately

    First expert elicitation of knowledge on possible drivers of observed increasing human cases of Tick-Borne Encephalitis in Europe

    Get PDF
    International audienceTick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence
    corecore