8 research outputs found

    Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    Get PDF
    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis

    Mitochondrial Changes in Ageing Caenorhabditis elegans – What Do We Learn from Superoxide Dismutase Knockouts?

    Get PDF
    One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed

    Site-Specific Variations in Bone Mineral Density under Systemic Conditions Inducing Osteoporosis in Minipigs

    Get PDF
    Osteoporosis is a systemic bone disease with an increasing prevalence in the elderly population. There is conflicting opinion about whether osteoporosis affects the alveolar bone of the jaws and whether it poses a risk to the osseointegration of dental implants. The aim of the present study was to evaluate the effects of systemic glucocorticoid administration on the jaw bone density of minipigs. Thirty-seven adult female minipigs were randomly divided into two groups. Quantitative computed tomography (QCT) was used to assess bone mineral density BMD of the lumbar spine as well as the mandible and maxilla, and blood was drawn. One group of minipigs initially received 1.0 mg prednisolone per kg body weight daily for 2 months. The dose was tapered to 0.5 mg per kg body weight per day thereafter. The animals in the other group served as controls and received placebo. QCT and blood analysis were repeated after 6 and 9 months. BMD was compared between the two groups by measuring Hounsfield units, and serum levels of several bone metabolic markers were also assessed. A decrease in BMD was observed in the jaws from baseline to 9 months. This was more pronounced in the prednisolone group. Statistically significant differences were reached for the mandible (p < 0.001) and the maxilla (p < 0.001). The administration of glucocorticoids reduced the BMD in the jaws of minipigs. The described model shows promise in the evaluation of osseointegration of dental implants in bone that is compromised by osteoporosis

    Systems Biology and Bioinformatics in Aging Research: A Workshop Report

    No full text
    Closed access. Final publication is available from Mary Ann Liebert, Inc., publishers http://dx.doi.org/10.1089/rej.2012.1360In an "aging society," health span extension is most important. As in 2010, talks in this series of meetings in Rostock-Warnemünde demonstrated that aging is an apparently very complex process, where computational work is most useful for gaining insights and to find interventions that counter aging and prevent or counteract aging-related diseases. The specific topics of this year's meeting entitled, "RoSyBA: Rostock Symposium on Systems Biology and Bioinformatics in Ageing Research," were primarily related to "Cancer and Aging" and also had a focus on work funded by the German Federal Ministry of Education and Research (BMBF). The next meeting in the series, scheduled for September 20-21, 2013, will focus on the use of ontologies for computational research into aging, stem cells, and cancer. Promoting knowledge formalization is also at the core of the set of proposed action items concluding this report. © Copyright 2012, Mary Ann Liebert, Inc

    Systems biology and bioinformatics in aging research: a workshop report

    No full text
    In an "aging society," health span extension is most important. As in 2010, talks in this series of meetings in Rostock-Warnemünde demonstrated that aging is an apparently very complex process, where computational work is most useful for gaining insights and to find interventions that counter aging and prevent or counteract aging-related diseases. The specific topics of this year's meeting entitled, "RoSyBA: Rostock Symposium on Systems Biology and Bioinformatics in Ageing Research," were primarily related to "Cancer and Aging" and also had a focus on work funded by the German Federal Ministry of Education and Research (BMBF). The next meeting in the series, scheduled for September 20-21, 2013, will focus on the use of ontologies for computational research into aging, stem cells, and cancer. Promoting knowledge formalization is also at the core of the set of proposed action items concluding this report. © Copyright 2012, Mary Ann Liebert, Inc

    SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity

    No full text
    We have created P1 artificial chromosome transgenic mice expressing the human mitochondrial superoxide dismutase 2 (SOD2) and thus generated mice with a physiologically controlled augmentation of SOD2 expression leading to increased SOD2 enzyme activities and lowered superoxide levels. In the transgenic mice, effects on mitochondrial function such as enhanced oxidative capacity and greater resistance against inducers of mitochondrial permeability were observed. Superoxide in the mitochondrial matrix has been proposed to activate uncoupling proteins (UCPs), thus providing a feedback mechanism that will lower respiratory chain superoxide production by increasing a proton leak across the inner mitochondrial membrane. However, UCP1 and UCP3 activities and mitochondrial ATP production rates were not altered in isolated mitochondria from SOD2 transgenic mice, despite lowered superoxide levels. Globally, the transgenic mice displayed normal resting metabolic rates, indicating an absence of effect on any UCP activities, and normal oxygen consumption responses after norepinephrine injection. These results strongly suggest that endogenously generated matrix superoxide does not regulate UCP activity and in vivo energy expenditure
    corecore