2,291 research outputs found

    Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment

    Get PDF
    Increasing concentrations of atmospheric carbon dioxide are projected to lead to an increase in sea surface temperatures, potentially impacting marine ecosystems and biogeochemical cycling. Here we conducted an indoor mesocosm experiment with a natural plankton community taken from the Baltic Sea in summer. We induced a plankton bloom via nutrient addition and followed the dynamics of the different carbon and nitrogen pools for a period of one month at temperatures ranging from 9.5 °C to 17.5 °C, representing a range of ± 4 °C relative to ambient temperature. The uptake of dissolved inorganic carbon (DIC) and the net build-up of both particulate (POC) and dissolved organic carbon (DOC) were all enhanced at higher temperatures and almost doubled over a temperature gradient of 8 °C. Furthermore, elemental ratios of carbon and nitrogen (C:N) in both particulate and dissolved organic matter increased in response to higher temperatures, both reaching very high C:N ratios of >30 at +4 °C. Altogether, these observations suggest a pronounced increase in excess carbon fixation in response to elevated temperatures. Most of these findings are contrary to results from similar experiments conducted with plankton populations sampled in spring, revealing large uncertainties in our knowledge of temperature sensitivities of key processes in marine carbon cycling. Since a major difference to previous mesocosm experiments was the dominant phytoplankton species, we hypothesize that species composition might play an important role in the response of biogeochemical cycling to increasing temperatures

    Improved Mass Accuracy and Isotope Confirmation through Alignment of Ultrahigh-Resolution Mass Spectra of Complex Natural Mixtures

    Get PDF
    Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to ή13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost

    X-ray Dose Rate and Spectral Measurements during Ultrafast Laser Machining Using a Calibrated (High-Sensitivity) Novel X-ray Detector

    Get PDF
    Ultrashort pulse laser machining is subject to increase the processing speeds by scaling average power and pulse repetition rate, accompanied with higher dose rates of X-ray emission generated during laser–matter interaction. In particular, the X-ray energy range below 10 keV is rarely studied in a quantitative approach. We present measurements with a novel calibrated X-ray detector in the detection range of 2–20 keV and show the dependence of X-ray radiation dose rates and the spectral emissions for different laser parameters from frequently used metals, alloys, and ceramics for ultrafast laser machining. Our investigations include the dose rate dependence on various laser parameters available in ultrafast laser laboratories as well as on industrial laser systems. The measured X-ray dose rates for high repetition rate lasers with different materials definitely exceed the legal limitations in the absence of radiation shielding

    Influence of 68Ga-DOTATOC on sparing of normal tissue for radiation therapy of skull base meningioma: differential impact of photon and proton radiotherapy

    Get PDF
    Background: To evaluate the impact of 68Ga-DOTATOC-PET on treatment planning and sparing of normal tissue in the treatment of skull base meningioma with advanced photons and protons. Methods: From the institutional database consisting of 507 skull base meningiomas 10 patients were chosen randomly for the present analysis. Target volume definition was performed based on CT and MRI only, as well as with additional 68Ga-DOTATOC-PET. Treatment plans were performed for Intensity Modulated Radiotherapy (IMRT) and proton therapy using active raster scanning on both target volumes. We calculated doses to relevant organs at risk (OAR), conformity indices as well as differences in normal tissue sparing between both radiation modalities based on CT/MRI planning as well as CT/MRI/PET planning. Results: For photon treatment plans, PET-based treatment plans showed a reduction of brain stem Dmax and Dmedian for different levels of total dose. At the optic chiasm, use of 68Ga-DOTATOC significantly reduces Dmax; moreover, the Dmedian is reduced in most cases, too. For both right and left optic nerve, reduction of dose by addition of 68Ga-DOTATOC-PET is minimal and depends on the anatomical location of the meningioma. In protons, the impact of 68Ga-DOTATOC-PET is minimal compared to photons. Conclusion: Addition of 68Ga-DOTATOC-PET information into treatment planning for skull base meningiomas has a significant impact on target volumes. In most cases, PET-planning leads to significant reductions of the treatment volumes. Subsequently, reduced doses are applied to OAR. Using protons, the benefit of additional PET is smaller since target coverage is more conformal and dose to OAR is already reduced compared to photons. Therefore, PET-imaging has the greatest margin of benefit in advanced photon techniques, and combination of PET-planning and high-precision treatment leads to comparable treatment plans as with protons

    Antioxidant Activity and Phenolic Content of Marine Dissolved Organic Matter and Their Relation to Molecular Composition

    Get PDF
    The potential of marine dissolved organic matter (DOM) for free radical scavenging has been extensively evaluated, however, the quantitative assessment of the antioxidant potential has been recently measured for the first time. The linkage of the DOM antioxidant potential to its molecular composition has not yet been examined. Following this line, this article takes a step forward by assessing, throughout a polarity-mediated fractionation, (1) the antioxidant capacity and phenolic content and (2) the molecular characterization of DOM in a more exhaustive manner. (3) The DOM antioxidant potential and phenolic content was linked to the molecular composition of DOM, which was molecularly characterized using ultrahigh resolution Fourier transform Ion Cyclotron Resonance mass spectrometry (FT-ICR MS). Antioxidant activity and phenolic content were quantified by the free radical 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS⋅) and the Folin-Ciocalteu methods, respectively. We considered three types of different natural DOM samples: the deep North Pacific Ocean, the oligotrophic surface of the North Pacific Ocean and porewater from the sulfidic tidal flats of the Wadden Sea. Bulk porewater and its individual polarity fractions presented the highest antioxidant activity and phenolic content. DOM from the water column samples had lower antioxidant activity and phenolic content than porewater, but exceeded what it is commonly found in macroalgae, microalgae, fruits and vegetables with cosmeceutical purposes. Our values were similar to published values for terrestrial DOM. The variations in bioactivity were dependent on polarity and molecular composition. The high resolution and high mass accuracy used to determine the molecular composition of marine DOM and the chemometric and multistatistical analyses employed have allowed to distinguish molecular categories that are related to the bioactive potential. As a future perspective, we performed cytotoxicity tests with human cells and propose marine DOM as a natural ingredient for the development of cosmeceutical products

    On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility

    Get PDF
    Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow

    Design and usability testing of an in-house developed performance feedback tool for medical students

    Get PDF
    Background: Feedback is essential in a self-regulated learning environment such as medical education. When feedback channels are widely spread, the need arises for a system of integrating this information in a single platform. This article reports on the design and initial testing of a feedback tool for medical students at Charite-Universitatsmedizin, Berlin, a large teaching hospital. Following a needs analysis, we designed and programmed a feedback tool in a user-centered approach. The resulting interface was evaluated prior to release with usability testing and again post release using quantitative/qualitative questionnaires. Results: The tool we created is a browser application for use on desktop or mobile devices. Students log in to see a dashboard of "cards" featuring summaries of assessment results, a portal for the documentation of acquired practical skills, and an overview of their progress along their course. Users see their cohort's average for each format. Learning analytics rank students' strengths by subject. The interface is characterized by colourful and simple graphics. In its initial form, the tool has been rated positively overall by students. During testing, the high task completion rate (78%) and low overall number of non-critical errors indicated good usability, while the quantitative data (system usability scoring) also indicates high ease of use. The source code for the tool is open-source and can be adapted by other medical faculties. Conclusions: The results suggest that the implemented tool LevelUp is well-accepted by students. It therefore holds promise for improved, digitalized integrated feedback about students' learning progress. Our aim is that LevelUp will help medical students to keep track of their study progress and reflect on their skills. Further development will integrate users' recommendations for additional features as well as optimizing data flow

    Old World megadroughts and pluvials during the Common Era

    Get PDF
    Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other “Old World” climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the “Old World Drought Atlas” (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability
    • 

    corecore