115 research outputs found

    3D shape of Orion A from Gaia DR2

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.We use the Gaia DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter ~75 pc long Tail. The true extent of Orion A is not the projected ~40 pc but ~90 pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio (~30:1) and high column-density fraction (~45%) make it similar to large-scale Milky Way filaments ("bones"), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.Peer reviewedFinal Accepted Versio

    Towards fast prototyping of IVAs behavior: Pogamut 2.

    Get PDF
    Abstract. We present the platform for IVAs development in the human like environment of the first-person shooter game Unreal Tournament 2004. This environment is extendible and supported by vast community of users. Based on our previous experience the problem of fast verification of models of artificial intelligence or IVAs is in implementation issues. The developer spends most of his time solving technical environment dependent issues and malfunctions, which drives him away from his goals. Therefore our modular platform provides a tool, which helps solving those problems and the developer can spend saved time by solving another AI based issues and model verification. The platform is aimed for research and educational purposes

    A Bayesian view of the current status of dark matter direct searches

    Full text link
    Bayesian statistical methods offer a simple and consistent framework for incorporating uncertainties into a multi-parameter inference problem. In this work we apply these methods to a selection of current direct dark matter searches. We consider the simplest scenario of spin-independent elastic WIMP scattering, and infer the WIMP mass and cross-section from the experimental data with the essential systematic uncertainties folded into the analysis. We find that when uncertainties in the scintillation efficiency of Xenon100 have been accounted for, the resulting exclusion limit is not sufficiently constraining to rule out the CoGeNT preferred parameter region, contrary to previous claims. In the same vein, we also investigate the impact of astrophysical uncertainties on the preferred WIMP parameters. We find that within the class of smooth and isotropic WIMP velocity distributions, it is difficult to reconcile the DAMA and the CoGeNT preferred regions by tweaking the astrophysics parameters alone. If we demand compatibility between these experiments, then the inference process naturally concludes that a high value for the sodium quenching factor for DAMA is preferred.Comment: 37 pages, 14 figures and 7 tables. Replacement for matching the version accepted for publicatio

    PRediction of acute coronary syndrome in acute ischemic StrokE (PRAISE) – protocol of a prospective, multicenter trial with central reading and predefined endpoints

    Get PDF
    Background: Current guidelines recommend measurement of troponin in acute ischemic stroke (AIS) patients. In AIS patients, troponin elevation is associated with increased mortality and worse outcome. However, uncertainty remains regarding the underlying pathophysiology of troponin elevation after stroke, particularly regarding diagnostic and therapeutic consequences. Troponin elevation may be caused by coronary artery disease (CAD) and more precisely acute coronary syndrome (ACS). Both have a high prevalence in stroke patients and contribute to poor outcome. Therefore, better diagnostic algorithms are needed to identify those AIS patients likely to have ACS or other manifestations of CAD. Methods/design: The primary goal of the "PRediction of Acute coronary syndrome in acute Ischemic StrokE" (PRAISE) study is to develop a diagnostic algorithm for prediction of ACS in AIS patients. The primary hypothesis will test whether dynamic high-sensitivity troponin levels determined by repeat measurements (i.e., "rise or fall-pattern") indicate presence of ACS when compared to stable (chronic) troponin elevation. PRAISE is a prospective, multicenter, observational trial with central reading and predefined endpoints guided by a steering committee. Clinical symptoms, troponin levels as well as findings on electrocardiogram, echocardiogram, and coronary angiogram will be recorded and assessed by central academic core laboratories. Diagnosis of ACS will be made by an endpoint adjudication committee. Severe adverse events will be evaluated by a critical event committee. Safety will be judged by a data and safety monitoring board. Follow-up will be conducted at three and twelve months and will record new vascular events (i.e., stroke and myocardial infarction) as well as death, functional and cognitive status. According to sample size calculation, 251 patients have to be included. Discussion: PRAISE will prospectively determine the frequency of ACS and characterize cardiac and coronary pathologies in a large, multicenter cohort of AIS patients with troponin elevation. The findings will elucidate the origin of troponin elevation, shed light on its impact on necessary diagnostic procedures and provide data on the safety and diagnostic yield of coronary angiography early after stroke. Thereby, PRAISE will help to refine algorithms and develop guidelines for the cardiac workup in AIS. Trial registration: NCT03609385 registered 1st August 2018

    Molecular Cloud Evolution VI. Measuring cloud ages

    Get PDF
    This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.In previous contributions, we have presented an analytical model describing the evolution and star formation rate (SFR) of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud’s evolution is characterized by an initial increase in its mass, density, SFR, and star formation efficiency (SFE), as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud’s evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25 per cent of their mass had become molecular. We find ages from ∌1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ∌ 103–104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ∌300–500M⊙ Myr−1. By this time, they have contracted to become compact (∌1 pc) massive star-forming clumps, in general embedded within larger giant molecular clouds.Peer reviewe

    Phenotyping patients with ischaemic heart disease at risk of developing heart failure: an analysis of the HOMAGE trial

    Get PDF
    Aims: We aim to characterize the clinical and proteomic profiles of patients at risk of developing heart failure (HF), with and without coronary artery disease (CAD) or prior myocardial infarction (MI). Methods and results: HOMAGE evaluated the effect of spironolactone on plasma and serum markers of fibrosis over 9 months of follow-up in participants with (or at risk of having) CAD, and raised natriuretic peptides. In this post hoc analysis, patients were classified as (i) neither CAD nor MI; (ii) CAD; or (iii) MI. Proteomic between-group differences were evaluated through logistic regression and narrowed using backward stepwise selection and bootstrapping. Among the 527 participants, 28% had neither CAD or MI, 31% had CAD, and 41% had prior MI. Compared with people with neither CAD nor MI, those with CAD had higher baseline plasma concentrations of matrix metalloproteinase-7 (MMP-7), galectin-4 (GAL4), plasminogen activator inhibitor 1 (PAI-1), and lower plasma peptidoglycan recognition protein 1 (PGLYRP1), whilst those with a history of MI had higher plasma MMP-7, neurotrophin-3 (NT3), pulmonary surfactant-associated protein D (PSPD), and lower plasma tumour necrosis factor-related activation-induced cytokine (TRANCE). Proteomic signatures were similar for patients with CAD or prior MI. Treatment with spironolactone was associated with an increase of MMP7, NT3, and PGLYRP1 at 9 months. Conclusions: In patients at risk of developing HF, those with CAD or MI had a different proteomic profile regarding inflammatory, immunological, and collagen catabolic processes

    Heart failure with preserved ejection fraction according to the HFA-PEFF score in COVID-19 patients: clinical correlates and echocardiographic findings

    Get PDF
    Aims: Viral-induced cardiac inflammation can induce heart failure with preserved ejection fraction (HFpEF)-like syndromes. COVID-19 can lead to myocardial damage and vascular injury. We hypothesised that COVID-19 patients frequently develop a HFpEF-like syndrome, and designed this study to explore this. Methods and results: Cardiac function was assessed in 64 consecutive, hospitalized, and clinically stable COVID-19 patients from April-November 2020 with left ventricular ejection fraction (LVEF) ≄50% (age 56 ± 19 years, females: 31%, severe COVID-19 disease: 69%). To investigate likelihood of HFpEF presence, we used the HFA-PEFF score. A low (0-1 points), intermediate (2-4 points), and high (5-6 points) HFA-PEFF score was observed in 42%, 33%, and 25% of patients, respectively. In comparison, 64 subjects of similar age, sex, and comorbidity status without COVID-19 showed these scores in 30%, 66%, and 4%, respectively (between groups: P = 0.0002). High HFA-PEFF scores were more frequent in COVID-19 patients than controls (25% vs. 4%, P = 0.001). In COVID-19 patients, the HFA-PEFF score significantly correlated with age, estimated glomerular filtration rate, high-sensitivity troponin T (hsTnT), haemoglobin, QTc interval, LVEF, mitral E/A ratio, and H2 FPEF score (all P < 0.05). In multivariate, ordinal regression analyses, higher age and hsTnT were significant predictors of increased HFA-PEFF scores. Patients with myocardial injury (hsTnT ≄14 ng/L: 31%) vs. patients without myocardial injury, showed higher HFA-PEFF scores [median 5 (interquartile range 3-6) vs. 1 (0-3), P < 0.001] and more often showed left ventricular diastolic dysfunction (75% vs. 27%, P < 0.001). Conclusion: Hospitalized COVID-19 patients frequently show high likelihood of presence of HFpEF that is associated with cardiac structural and functional alterations, and myocardial injury. Detailed cardiac assessments including echocardiographic determination of left ventricular diastolic function and biomarkers should become routine in the care of hospitalized COVID-19 patients

    Commitment zu aktivem Daten- und -softwaremanagement in großen ForschungsverbĂŒnden

    Get PDF
    Wir erkennen die Wichtigkeit von Forschungsdaten und -software fĂŒr unsere Forschungsprozesse an und ordnen die Veröffentlichung von Forschungsdaten und -software als wesentlichen Bestandteil der wissenschaftlichen PublikationstĂ€tigkeit ein. DafĂŒr unterstĂŒtzen wir als Verbund unsere Forschenden im Umgang mit Daten und Software nach den FAIR-Prinzipien in Einvernehmen mit dem DFG-Kodex “Leitlinien zur Sicherung guter wissenschaftlicher Praxis”. In Zusammenarbeit mit unseren Institutionen und Fachcommunities stellen wir adĂ€quate Forschungsdatenmanagement-Werkzeuge und -Dienste bereit und befĂ€higen unsere Forschenden zum Umgang damit. Dabei bauen wir vorzugsweise auf existierenden Angeboten auf und bemĂŒhen uns im Gegenzug um deren Anpassung an unsere BedĂŒrfnisse. Wir streben Maßnahmen fĂŒr die Definition und Sicherstellung der QualitĂ€t unserer Forschungsdaten und -software an. Wir verwenden vorzugsweise existierende Daten-/Metadatenstandards und vernetzen uns nach Möglichkeit fĂŒr die Erstellung und Implementierung neuer Standards mit entsprechenden nationalen und internationalen Initiativen. Wir verfolgen die Entwicklungen im Bereich des Forschungsdaten- und -softwaremanagements und prĂŒfen neu entstehende Empfehlungen und Richtlinien zeitnah auf ihre Umsetzbarkeit

    Clinical correlates and prognostic impact of neurologic disorders in Takotsubo syndrome

    Get PDF
    © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Cardiac alterations are frequently observed after acute neurological disorders. Takotsubo syndrome (TTS) represents an acute heart failure syndrome and is increasingly recognized as part of the spectrum of cardiac complications observed after neurological disorders. A systematic investigation of TTS patients with neurological disorders has not been conducted yet. The aim of the study was to expand insights regarding neurological disease entities triggering TTS and to investigate the clinical profile and outcomes of TTS patients after primary neurological disorders. The International Takotsubo Registry is an observational multicenter collaborative effort of 45 centers in 14 countries (ClinicalTrials.gov, identifier NCT01947621). All patients in the registry fulfilled International Takotsubo Diagnostic Criteria. For the present study, patients were included if complete information on acute neurological disorders were available. 2402 patients in whom complete information on acute neurological status were available were analyzed. In 161 patients (6.7%) an acute neurological disorder was identified as the preceding triggering factor. The most common neurological disorders were seizures, intracranial hemorrhage, and ischemic stroke. Time from neurological symptoms to TTS diagnosis was ≀ 2 days in 87.3% of cases. TTS patients with neurological disorders were younger, had a lower female predominance, fewer cardiac symptoms, lower left ventricular ejection fraction, and higher levels of cardiac biomarkers. TTS patients with neurological disorders had a 3.2-fold increased odds of in-hospital mortality compared to TTS patients without neurological disorders. In this large-scale study, 1 out of 15 TTS patients had an acute neurological condition as the underlying triggering factor. Our data emphasize that a wide spectrum of neurological diseases ranging from benign to life-threatening encompass TTS. The high rates of adverse events highlight the need for clinical awareness.The International Takotsubo Registry was supported by the Biss Davies Charitable Trust. Dr. Scheitz has been supported by the Corona Foundation. Dr. Templin has been supported by the H.H. Sheikh Khalifa bin Hamad Al-Thani Research Programme and the Swiss Heart Foundation.info:eu-repo/semantics/publishedVersio
    • 

    corecore