71 research outputs found
Anacetrapib reduces progression of atherosclerosis, mainly by reducing non-HDL-cholesterol, improves lesion stability and adds to the beneficial effects of atorvastatin
The present study is the first intervention study in a well-established, translational mouse model for hyperlipidaemia and atherosclerosis showing that anacetrapib dose-dependently reduces atherosclerosis development and adds to the anti-atherogenic effects of atorvastatin. This effect is mainly ascribed to the reduction in non-HDL-C despite a remarkable increase in HDL-C and without affecting HDL functionality. In addition, anacetrapib improves lesion stabilit
Effect of sitagliptin on energy metabolism and brown adipose tissue in overweight individuals with prediabetes:a randomised placebo-controlled trial
Aims/hypothesis: The aim of this study was to evaluate the effect of sitagliptin on glucose tolerance, plasma lipids, energy expenditure and metabolism of brown adipose tissue (BAT), white adipose tissue (WAT) and skeletal muscle in overweight individuals with prediabetes (impaired glucose tolerance and/or impaired fasting glucose). Methods: We performed a randomised, double-blinded, placebo-controlled trial in 30 overweight, Europid men (age 45.9 \xc2\xb1 6.2\xc2\xa0years; BMI 28.8 \xc2\xb1 2.3\xc2\xa0kg/m2) with prediabetes in the Leiden University Medical Center and the Alrijne Hospital between March 2015 and September 2016. Participants were initially randomly allocated to receive sitagliptin (100\xc2\xa0mg/day) (n = 15) or placebo (n = 15) for 12\xc2\xa0weeks, using a randomisation list that was set up by an unblinded pharmacist. All people involved in the study as well as participants were blinded to group assignment. Two participants withdrew from the study prior to completion (both in the sitagliptin group) and were subsequently replaced with two new participants that were allocated to the same treatment. Before and after treatment, fasting venous blood samples and skeletal muscle biopsies were obtained, OGTT was performed and body composition, resting energy expenditure and [18F] fluorodeoxyglucose ([18F]FDG) uptake by metabolic tissues were assessed. The primary study endpoint was the effect of sitagliptin on BAT volume and activity. Results: One participant from the sitagliptin group was excluded from analysis, due to a distribution error, leaving 29 participants for further analysis. Sitagliptin, but not placebo, lowered glucose excursion (\xe2\x88\x9240%; p < 0.003) during OGTT, accompanied by an improved insulinogenic index (+38%; p < 0.003) and oral disposition index (+44%; p < 0.003). In addition, sitagliptin lowered serum concentrations of triacylglycerol (\xe2\x88\x9229%) and very large (\xe2\x88\x9246%), large (\xe2\x88\x9235%) and medium-sized (\xe2\x88\x9224%) VLDL particles (all p < 0.05). Body weight, body composition and energy expenditure did not change. In skeletal muscle, sitagliptin increased mRNA expression of PGC1\xce\xb2 (also known as PPARGC1B) (+117%; p < 0.05), a main controller of mitochondrial oxidative energy metabolism. Although the primary endpoint of change in BAT volume and activity was not met, sitagliptin increased [18F] FDG uptake in subcutaneous WAT (sWAT; +53%; p < 0.05). Reported side effects were mild and transient and not necessarily related to the treatment. Conclusions/interpretation: Twelve weeks of sitagliptin in overweight, Europid men with prediabetes improves glucose tolerance and lipid metabolism, as related to increased [18F] FDG uptake by sWAT, rather than BAT, and upregulation of the mitochondrial gene PGC1\xce\xb2 in skeletal muscle. Studies on the effect of sitagliptin on preventing or delaying the progression of prediabetes into type 2 diabetes are warranted. Trial registration: ClinicalTrials.gov NCT02294084. Funding: This study was funded by Merck Sharp & Dohme Corp, Dutch Heart Foundation, Dutch Diabetes Research Foundation, Ministry of Economic Affairs and the University of Granada
Lipopolysaccharide Lowers Cholesteryl Ester Transfer Protein by Activating F4/80Clec4fVsig4Ly6C Kupffer Cell Subsets
BACKGROUND: Lipopolysaccharide (LPS) decreases hepatic CETP (cholesteryl ester transfer protein) expression albeit that the underlying mechanism is disputed. We recently showed that plasma CETP is mainly derived from Kupffer cells (KCs). In this study, we investigated the role of KC subsets in the mechanism by which LPS reduces CETP expression. METHODS AND RESULTS: In CETP-transgenic mice, LPS markedly decreased hepatic CETP expression and plasma CETP concentration without affecting hepatic macrophage number. This was paralleled by decreased expression of the resting KC markers C-type lectin domain family 4, member f (Clec4f) and V-set and immunoglobulin domain containing 4 (Vsig4), while expression of the infiltrating monocyte marker lymphocyte antigen 6 complex locus C (Ly6C) was increased. Simultaneously, the ratio of plasma high-density lipoprotein-cholesterol over non-high-density lipoprotein-cholesterol transiently increased. After ablation hepatic macrophages via injection with liposomal clodronate, the reappearance of hepatic gene and protein expression of CETP coincided with Clec4f and Vsig4, but not Ly6C. Double-immunofluorescence staining showed that CETP co-localized with Clec4f+ KCs and not Ly6C+ monocytes. In humans, microarray gene-expression analysis of liver biopsies revealed that hepatic expression and plasma level of CETP both correlated with hepatic VSIG4 expression. LPS administration decreased the plasma CETP concentration in humans. In vitro experiments showed that LPS reduced liver X receptor-mediated CETP expression. CONCLUSIONS: Hepatic expression of CETP is exclusively confined to the resting KC subset (ie, F4/80+Clec4f+Vsig4+Ly6C-). LPS activated resting KCs, leading to reduction of Clec4f and Vsig4 expression and reduction of hepatic CETP expression, consequently decreasing plasma CETP and raising high-density lipoprotein (HDL)-cholesterol. This sequence of events is consistent with the anti-inflammatory role of HDL in the response to LPS and may be relevant as a defense mechanism against bacterial infections
Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels
Background So far, more than 170 loci have been associated with circulating lipid levels through genomewide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ~60 000 individuals in the discovery stage and ~90 000 samples in the replication stage. Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene. Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels
Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden
We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD
Estimation of Activity Related Energy Expenditure and Resting Metabolic Rate in Freely Moving Mice from Indirect Calorimetry Data
Physical activity (PA) is a main determinant of total energy expenditure (TEE) and has been suggested to play a key role in body weight regulation. However, thus far it has been challenging to determine what part of the expended energy is due to activity in freely moving subjects. We developed a computational method to estimate activity related energy expenditure (AEE) and resting metabolic rate (RMR) in mice from activity and indirect calorimetry data. The method is based on penalised spline regression and takes the time dependency of the RMR into account. In addition, estimates of AEE and RMR are corrected for the regression dilution bias that results from inaccurate PA measurements. We evaluated the performance of our method based on 500 simulated metabolic chamber datasets and compared it to that of conventional methods. It was found that for a sample time of 10 minutes the penalised spline model estimated the time-dependent RMR with 1.7 times higher accuracy than the Kalman filter and with 2.7 times higher accuracy than linear regression. We assessed the applicability of our method on experimental data in a case study involving high fat diet fed male and female C57Bl/6J mice. We found that TEE in male mice was higher due to a difference in RMR while AEE levels were similar in both groups, even though female mice were more active. Interestingly, the higher activity did not result in a difference in AEE because female mice had a lower caloric cost of activity, which was likely due to their lower body weight. In conclusion, TEE decomposition by means of penalised spline regression provides robust estimates of the time-dependent AEE and RMR and can be applied to data generated with generic metabolic chamber and indirect calorimetry set-ups
The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice
AIMS/HYPOTHESIS: White adipose tissue (WAT) consists of various depots with different adipocyte functionality and immune cell composition. Knowledge of WAT-depot-specific differences in expandability and immune cell influx during the development of obesity is limited, therefore we aimed to characterise different WAT depots during the development of obesity in mice. METHODS: Gonadal WAT (gWAT), subcutaneous WAT (sWAT) and mesenteric WAT (mWAT) were isolated from male C57Bl/6J mice with different body weights (approximately 25–60 g) and analysed. Linear and non-linear regression models were used to describe the extent of WAT depot expandability and immune cell composition as a function of body weight. RESULTS: Whereas mouse sWAT and mWAT continued to expand with body weight, gWAT expanded mainly during the initial phase of body weight gain. The expansion diminished after the mice reached a body weight of around 40 g. From this point on, gWAT crown-like structure formation, liver steatosis and insulin resistance occurred. Mouse WAT depots showed major differences in immune cell composition: gWAT consisted mainly of macrophages, whereas sWAT and mWAT primarily contained lymphocytes. CONCLUSIONS/INTERPRETATION: Marked inter-depot differences exist in WAT immune cell composition and expandability. The limited storage capacity of gWAT seems to direct the development of metabolic disorders in male C57Bl/6J mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3594-8) contains peer-reviewed but unedited supplementary material, which is available to authorised users
Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels
Background So far, more than 170 loci have been associated with circulating lipid levels through genomewide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ~60 000 individuals in the discovery stage and ~90 000 samples in the replication stage. Results Our study resu
Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels
So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels
- …