72 research outputs found

    Créationnisme, darwinisme, dessein intelligent à la Cité des sciences et de l’industrie

    Get PDF
    Comment concilier information plurielle et exigence de vérité ? C’est l’épineux problème auquel est confrontée une bibliothèque comme celle de la CSI, dont la mission spécifique – présenter l’état de la science – peut se trouver en conflit avec l’opinion sur des sujets polémiques

    Critères de choix d'un système de stockage électrochimique hybride d'énergie photovoltaïque

    Get PDF
    International audienceThe design of battery systems is an important issue in many cases conditioned by several constraints and modeling challenges. This work proposes a design method for electrochemical hybrid energy storage system associated with photovoltaic modules. Based on this method, an optimization procedure is used to discuss the interest of creating a hybrid system combining two different types of batteries. The batteries are modeled as a constant voltage source in series with an internal resistance and the finite capacity of the batteries is considered independent from their use. The model uses the battery capacity, maximum charge rate, internal resistance and cost given at the beginning of the battery life.Une procédure d'optimisation et de dimensionnement d'un système de stockage électrochimique d'énergie associé à des panneaux solaires est décrite et discutée. Elle permet d'étudier l'intérêt ou non de réaliser un système hybride associant deux types de batteries différents. Cet outil utilise un modèle simplifié de batteries : elles sont considérées comme une source de tension constante en série avec une résistance interne avec une capacité finie indépendante du type d'utilisation. Le modèle prend ainsi en compte des caractéristiques de batteries à l'état neuf : capacité, régime maximal de charge, résistance interne et coût

    Optimal Design and Operation Management of Battery-Based Energy Storage Systems (BESS) in Microgrids

    Get PDF
    Energy storage systems (ESSs) can enhance the performance of energy networks in multiple ways; they can compensate the stochastic nature of renewable energies and support their large-scale integration into the grid environment. Energy storage options can also be used for economic operation of energy systems to cut down system’s operating cost. By utilizing ESSs, it is very possible to store energy in off-peak hours with lower cost and energize the grid during peak load intervals avoiding high price spikes. Application of ESSs will also enable better utilization of distributed energy sources and provide higher controllability at supply/demand side which is helpful for load leveling or peak shaving purposes. Last but not least, ESSs can provide frequency regulation services in off-grid locations where there is a strong need to meet the power balance in different operating conditions. Each of the abovementioned applications of energy storage units requires certain performance measures and constraints, which has to be well considered in design phase and embedded in control and management strategies. This chapter mainly focuses on these aspects and provides a general framework for optimal design and operation management of battery-based ESSs in energy networks

    Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in Intra-Uterine Growth Retardation.

    Get PDF
    BACKGROUND: As a first step to explore the possible relationships existing between the effects of low oxygen pressure in the first trimester placenta and placental pathologies developing from mid-gestation, two subtracted libraries totaling 2304 cDNA clones were constructed. For achieving this, two reciprocal suppressive/subtractive hybridization procedures (SSH) were applied to early (11 weeks) human placental villi after incubation either in normoxic or in hypoxic conditions. The clones from both libraries (1440 hypoxia-specific and 864 normoxia-specific) were spotted on nylon macroarrays. Complex cDNAs probes prepared from placental villi (either from early pregnancy, after hypoxic or normoxic culture conditions, or near term for controls or pathological placentas) were hybridized to the membranes. RESULTS: Three hundred and fifty nine clones presenting a hybridization signal above the background were sequenced and shown to correspond to 276 different genes. Nine of these genes are mitochondrial, while 267 are nuclear. Specific expression profiles characteristic of preeclampsia (PE) could be identified, as well as profiles specific of Intra-Uterine Growth Retardation (IUGR). Focusing on the chromosomal distribution of the fraction of genes that responded in at least one hybridization experiment, we could observe a highly significant chromosomal clustering of 54 genes into 8 chromosomal regions, four of which containing imprinted genes. Comparative mapping data indicate that these imprinted clusters are maintained in synteny in mice, and apparently in cattle and pigs, suggesting that the maintenance of such syntenies is requested for achieving a normal placental physiology in eutherian mammals. CONCLUSION: We could demonstrate that genes induced in PE were also genes highly expressed under hypoxic conditions (P = 5 x 10(-5)), which was not the case for isolated IUGR. Highly expressed placental genes may be in syntenies conserved interspecifically, suggesting that the maintenance of such clusters is requested for achieving a normal placental physiology in eutherian mammals

    Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region

    Get PDF
    Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR—target of the CTCF insulator—is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site

    (Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula

    Get PDF
    Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes

    Analytical approximationof the solution of ordinary and partial derivative equations with artificial neural networks

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF
    corecore