279 research outputs found

    Coordinated surface activities in Variovorax paradoxus EPS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Variovorax paradoxus </it>is an aerobic soil bacterium frequently associated with important biodegradative processes in nature. Our group has cultivated a mucoid strain of <it>Variovorax paradoxus </it>for study as a model of bacterial development and response to environmental conditions. Colonies of this organism vary widely in appearance depending on agar plate type.</p> <p>Results</p> <p>Surface motility was observed on minimal defined agar plates with 0.5% agarose, similar in nature to swarming motility identified in <it>Pseudomonas aeruginosa </it>PAO1. We examined this motility under several culture conditions, including inhibition of flagellar motility using Congo Red. We demonstrated that the presence of a wetting agent, mineral, and nutrient content of the media altered the swarming phenotype. We also demonstrated that the wetting agent reduces the surface tension of the agar. We were able to directly observe the presence of the wetting agent in the presence and absence of Congo Red, and found that incubation in a humidified chamber inhibited the production of wetting agent, and also slowed the progression of the swarming colony. We observed that swarming was related to both carbon and nitrogen sources, as well as mineral salts base. The phosphate concentration of the mineral base was critical for growth and swarming on glucose, but not succinate. Swarming on other carbon sources was generally only observed using M9 salts mineral base. Rapid swarming was observed on malic acid, d-sorbitol, casamino acids, and succinate. Swarming at a lower but still detectable rate was observed on glucose and sucrose, with weak swarming on maltose. Nitrogen source tests using succinate as carbon source demonstrated two distinct forms of swarming, with very different macroscopic swarm characteristics. Rapid swarming was observed when ammonium ion was provided as nitrogen source, as well as when histidine, tryptophan, or glycine was provided. Slower swarming was observed with methionine, arginine, or tyrosine. Large effects of mineral content on swarming were seen with tyrosine and methionine as nitrogen sources. Biofilms form readily under various culture circumstances, and show wide variance in structure under different conditions. The amount of biofilm as measured by crystal violet retention was dependent on carbon source, but not nitrogen source. Filamentous growth in the biofilm depends on shear stress, and is enhanced by continuous input of nutrients in chemostat culture.</p> <p>Conclusion</p> <p>Our studies have established that the beta-proteobacterium <it>Variovorax paradoxus </it>displays a number of distinct physiologies when grown on surfaces, indicative of a complex response to several growth parameters. We have identified a number of factors that drive sessile and motile surface phenotypes. This work forms a basis for future studies using this genetically tractable soil bacterium to study the regulation of microbial development on surfaces.</p

    Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer‐related mortality. Despite significant advances made in the treatment of other cancers, current chemotherapies offer little survival benefit in this disease. Pancreaticoduodenectomy offers patients the possibility of a cure, but most will die of recurrent or metastatic disease. Hence, preventing metastatic disease in these patients would be of significant benefit. Using principal component analysis (PCA), we identified a LOX/hypoxia signature associated with poor patient survival in resectable patients. We found that LOX expression is upregulated in metastatic tumors from Pdx1‐Cre KrasG12D/+ Trp53R172H/+ (KPC) mice and that inhibition of LOX in these mice suppressed metastasis. Mechanistically, LOX inhibition suppressed both migration and invasion of KPC cells. LOX inhibition also synergized with gemcitabine to kill tumors and significantly prolonged tumor‐free survival in KPC mice with early‐stage tumors. This was associated with stromal alterations, including increased vasculature and decreased fibrillar collagen, and increased infiltration of macrophages and neutrophils into tumors. Therefore, LOX inhibition is able to reverse many of the features that make PDAC inherently refractory to conventional therapies and targeting LOX could improve outcome in surgically resectable disease

    The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

    Get PDF
    BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ~40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor

    Effectiveness, cost-effectiveness and cost-benefit of a single annual professional intervention for the prevention of childhood dental caries in a remote rural Indigenous community

    Get PDF
    Background The aim of the study is to reduce the high prevalence of tooth decay in children in a remote, rural Indigenous community in Australia, by application of a single annual dental preventive intervention. The study seeks to (1) assess the effectiveness of an annual oral health preventive intervention in slowing the incidence of dental caries in children in this community, (2) identify the mediating role of known risk factors for dental caries and (3) assess the cost-effectiveness and cost-benefit of the intervention. Methods/design The intervention is novel in that most dental preventive interventions require regular re-application, which is not possible in resource constrained communities. While tooth decay is preventable, self-care and healthy habits are lacking in these communities, placing more emphasis on health services to deliver an effective dental preventive intervention. Importantly, the study will assess cost-benefit and cost-effectiveness for broader implementation across similar communities in Australia and internationally. Discussion There is an urgent need to reduce the burden of dental decay in these communities, by implementing effective, cost-effective, feasible and sustainable dental prevention programs. Expected outcomes of this study include improved oral and general health of children within the community; an understanding of the costs associated with the intervention provided, and its comparison with the costs of allowing new lesions to develop, with associated treatment costs. Findings should be generalisable to similar communities around the world. The research is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), registration number ACTRN12615000693527; date of registration: 3rd July 2015

    Potential impact and cost-effectiveness of condomless-sex-concentrated PrEP in KwaZulu-Natal accounting for drug resistance

    Get PDF
    INTRODUCTION: Oral pre-exposure prophylaxis (PrEP) in the form of tenofovir-disoproxil-fumarate/emtricitabine is being implemented in selected sites in South Africa. Addressing outstanding questions on PrEP cost-effectiveness can inform further implementation. METHODS: We calibrated an individual-based model to KwaZulu-Natal to predict the impact and cost-effectiveness of PrEP, with use concentrated in periods of condomless sex, accounting for effects on drug resistance. We consider (i) PrEP availability for adolescent-girls-and-young-women (aged 15-24; AGYW) and female sex workers (FSW), and (ii) availability for everyone aged 15-64. Our primary analysis represents a level of PrEP use hypothesized to be attainable by future PrEP programmes. RESULTS: In the context of PrEP use in adults aged 15-64 there was a predicted 33% reduction in incidence, and 36% reduction in women aged 15-24. PrEP was cost effective, including in a range of sensitivity analyses, although with substantially reduced (cost) effectiveness under a policy of ART initiation with efavirenz- rather than dolutegravir-based regimens due to PrEP undermining ART effectiveness by increasing HIV drug resistance. CONCLUSIONS: PrEP use concentrated during time periods of condomless sex has the potential to substantively impact HIV incidence and be cost-effective

    Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia

    Get PDF
    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis

    Chronic Activation of Corticotropin-Releasing Factor Type 2 Receptors Reveals a Key Role for 5-HT1A Receptor Responsiveness in Mediating Behavioral and Serotonergic Responses to Stressful Challenge

    Get PDF
    BackgroundThe corticotropin-releasing factor type 2 receptor (CRFR2) is suggested to play an important role in aiding recovery from acute stress, but any chronic effects of CRFR2 activation are unknown. CRFR2 in the midbrain raphé nuclei modulate serotonergic activity of this key source of serotonin (5-HT) forebrain innervation.MethodsTransgenic mice overexpressing the highly specific CRFR2 ligand urocortin 3 (UCN3OE) were analyzed for stress-related behaviors and hypothalamic-pituitary-adrenal axis responses. Responses to 5-HT receptor agonist challenge were assessed by local cerebral glucose utilization, while 5-HT and 5-hydroxyindoleacetic acid content were quantified in limbic brain regions.ResultsMice overexpressing urocortin 3 exhibited increased stress-related behaviors under basal conditions and impaired retention of spatial memory compared with control mice. Following acute stress, unlike control mice, they exhibited no further increase in these stress-related behaviors and showed an attenuated adrenocorticotropic hormone response. 5-HT and 5-hydroxyindoleacetic acid content of limbic nuclei were differentially regulated by stress in UCN3OE mice as compared with control mice. Responses to 5-HT type 1A receptor challenge were significantly and specifically reduced in UCN3OE mice. The distribution pattern of local cerebral glucose utilization and 5-HT type 1A receptor messenger RNA expression levels suggested this effect was mediated in the raphé nuclei.ConclusionsChronic activation of CRFR2 promotes an anxiety-like state, yet with attenuated behavioral and hypothalamic-pituitary-adrenal axis responses to stress. This is reminiscent of stress-related atypical psychiatric syndromes such as posttraumatic stress disorder, chronic fatigue, and chronic pain states. This new understanding indicates CRFR2 antagonism as a potential novel therapeutic target for such disorders
    corecore