21 research outputs found

    Integration of etched facet, electrically pumped, C-band Fabry-Perot lasers on a silicon photonic integrated circuit by transfer printing

    Get PDF
    We report on the heterogeneous integration of electrically pumped InP Fabry-Perot lasers on a SOI photonic integrated circuit by transfer printing. Transfer printing is a promising micromanipulation technique that allows the heterogeneous integration of optical and electronic components realized on their native substrate onto a target substrate with efficient use of the source material, in a way that can be scaled to parallel manipulation and that allows mixing components from different sources onto the same target. We pre-process transfer printable etched facet Fabry-Perot lasers on their native InP substrate, transfer print them into a trench defined in an SOI photonic chip and post-process the printed lasers on the target substrate. The laser facet is successfully butt-coupled to the photonic circuit using a silicon inverse taper based spot size converter. Milliwatt optical output power coupled to the Si waveguide circuit at 100 mA is demonstrated. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Wafer-scale hybrid integration of InP DFB lasers on Si photonics by flip-chip bonding with sub-300nm alignment precision

    No full text
    InP DFB lasers are flip-chip bonded to 300 mm Si photonic wafers using a pick-and-place tool with an advanced vision system, realizing high-precision and high-throughput passive assembly. By careful co-design of the InP-Si Photonics electrical, optical and mechanical interface, as well as dedicated alignment fiducials, sub-300 nm post-bonding alignment precision is realized in a 25 s cycle time. Optical coupling losses of -1.5 +/--0.5 dB are achieved at 1550 nm wavelength after epoxy underfill, with up to 40 mW of optical power coupled to the SiN waveguides on the Si photonics wafer. The bonding interface adds less than 10% to the series resistance of the laser diodes and post-bonding thermal resistance is measured to be 76 K/W (or 27 K.mm/W), mostly dominated by heat spreading resistance in the InP lasers as suggested by in-depth thermal modeling. Although the assembled lasers suffer from significant, unintentional optical backreflection from the fiber grating couplers used for optical characterization, laser linewidths well below 1 MHz have been measured under specific drive conditions, as supported by a detailed laser noise analysis. Finally, we demonstrate the ability of bonded laser assemblies to pass early reliability tests
    corecore