172 research outputs found

    The crystal structure of Pneumolysin at 2.0 Å resolution reveals the molecular packing of the pre-pore complex

    Get PDF
    Pneumolysin is a cholesterol-dependent cytolysin (CDC) and virulence factor of Streptococcus pneumoniae. It kills cells by forming pores assembled from oligomeric rings in cholesterol-containing membranes. Cryo-EM has revealed the structures of the membrane-surface bound pre-pore and inserted-pore oligomers, however the molecular contacts that mediate these oligomers are unknown because high-resolution information is not available. Here we have determined the crystal structure of full-length pneumolysin at 1.98 Å resolution. In the structure, crystal contacts demonstrate the likely interactions that enable polymerisation on the cell membrane and the molecular packing of the pre-pore complex. The hemolytic activity is abrogated in mutants that disrupt these intermolecular contacts, highlighting their importance during pore formation. An additional crystal structure of the membrane-binding domain alone suggests that changes in the conformation of a tryptophan rich-loop at the base of the toxin promote monomer-monomer interactions upon membrane binding by creating new contacts. Notably, residues at the interface are conserved in other members of the CDC family, suggesting a common mechanism for pore and pre-pore assembly

    Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome

    Get PDF
    Background Collectin-K1 (CL-K1, or CL-11) is a multifunctional Ca2+-dependent lectin with roles in innate immunity, apoptosis and embryogenesis. It binds to carbohydrates on pathogens to activate the lectin pathway of complement and together with its associated serine protease MASP-3 serves as a guidance cue for neural crest development. High serum levels are associated with disseminated intravascular coagulation, where spontaneous clotting can lead to multiple organ failure. Autosomal mutations in the CL-K1 or MASP-3 genes cause a developmental disorder called 3MC (Carnevale, Mingarelli, Malpuech and Michels) syndrome, characterised by facial, genital, renal and limb abnormalities. One of these mutations (Gly204Ser in the CL-K1 gene) is associated with undetectable levels of protein in the serum of affected individuals. Results In this study, we show that CL-K1 primarily targets a subset of high-mannose oligosaccharides present on both self- and non-self structures, and provide the structural basis for its ligand specificity. We also demonstrate that three disease-associated mutations prevent secretion of CL-K1 from mammalian cells, accounting for the protein deficiency observed in patients. Interestingly, none of the mutations prevent folding nor oligomerization of recombinant fragments containing the mutations in vitro. Instead, they prevent Ca2+ binding by the carbohydrate-recognition domains of CL-K1. We propose that failure to bind Ca2+ during biosynthesis leads to structural defects that prevent secretion of CL-K1, thus providing a molecular explanation of the genetic disorder. Conclusions We have established the sugar specificity of CL-K1 and demonstrated that it targets high-mannose oligosaccharides on self- and non-self structures via an extended binding site which recognises the terminal two mannose residues of the carbohydrate ligand. We have also shown that mutations associated with a rare developmental disorder called 3MC syndrome prevent the secretion of CL-K1, probably as a result of structural defects caused by disruption of Ca2+ binding during biosynthesis

    Structure of the C1r-C1s interaction of the C1 complex of complement activation.

    Get PDF
    The multiprotein complex C1 initiates the classical pathway of complement activation on binding to antibody-antigen complexes, pathogen surfaces, apoptotic cells, and polyanionic structures. It is formed from the recognition subcomponent C1q and a tetramer of proteases C1r2C1s2 as a Ca2+-dependent complex. Here we have determined the structure of a complex between the CUB1-EGF-CUB2 fragments of C1r and C1s to reveal the C1r-C1s interaction that forms the core of C1. Both fragments are L-shaped and interlock to form a compact antiparallel heterodimer with a Ca2+ from each subcomponent at the interface. Contacts, involving all three domains of each protease, are more extensive than those of C1r or C1s homodimers, explaining why heterocomplexes form preferentially. The available structural and biophysical data support a model of C1r2C1s2 in which two C1r-C1s dimers are linked via the catalytic domains of C1r. They are incompatible with a recent model in which the N-terminal domains of C1r and C1s form a fixed tetramer. On binding to C1q, the proteases become more compact, with the C1r-C1s dimers at the center and the six collagenous stems of C1q arranged around the perimeter. Activation is likely driven by separation of the C1r-C1s dimer pairs when C1q binds to a surface. Considerable flexibility in C1s likely facilitates C1 complex formation, activation of C1s by C1r, and binding and activation of downstream substrates C4 and C4b-bound C2 to initiate the reaction cascade.Funding for this work was provided by the Medical Research Council (Grant G1000191/1, to R.W., P.C.E.M., and W.J.S.)

    Determining molecular orientation via single molecule SERS in a plasmonic nano-gap

    Get PDF
    In this work, plasmonic nano-gaps consisting of a silver nanoparticle coupled to an extended silver film have been fully optimized for single molecule Surface-Enhanced Raman Scattering (SERS) spectroscopy. The SERS signal was found to be strongly dependent on the particle size and the molecule orientation with respect to the field inside the nano-gap. Using Finite Difference Time Domain (FDTD) simulations to complement the experimental measurements, the complex interplay between the excitation enhancement and the emission enhancement of the system as a function of particle size were highlighted. Additionally, in conjunction with Density Functional Theory (DFT), the well-defined field direction in the nano-gap enables to recover the orientation of individual molecules

    Hypoglycemia in Non-Diabetic In-Patients: Clinical or Criminal?

    Get PDF
    BACKGROUND AND AIM: We wished to establish the frequency of unexpected hypoglycemia observed in non diabetic patients outside the intensive care unit and to determine if they have a plausible clinical explanation. METHODS: We analysed data for 2010 from three distinct sources to identify non diabetic hypoglycaemic patients: bedside and laboratory blood glucose measurements; medication records for those treatments (high-strength glucose solution and glucagon) commonly given to reverse hypoglycemia; and diagnostic codes for hypoglycemia. We excluded from the denominator admissions of patients with a diagnosis of diabetes or prescribed diabetic medication. Case notes of patients identified were reviewed. We used capture-recapture methods to establish the likely frequency of hypoglycemia in non-diabetic in-patients outside intensive care unit at different cut-off points for hypoglycemia. We also recorded co-morbidities that might have given rise to hypoglycemia. RESULTS: Among the 37,898 admissions, the triggers identified 71 hypoglycaemic episodes at a cut-off of 3.3 mmol/l. Estimated frequency at 3.3 mmol/l was 50(CI 33-93), at 3.0 mmol/l, 36(CI 24-64), at 2.7 mmol/l, 13(CI 11-19), at 2.5 mmol/l, 11(CI 9-15) and at 2.2 mmol/l, 8(CI 7-11) per 10,000 admissions. Admissions of patients aged above 65 years were approximately 50% more likely to have an episode of hypoglycemia. Most were associated with important co-morbidities. CONCLUSION: Significant non-diabetic hypoglycemia in hospital in-patients (at or below 2.7 mmol/l) outside critical care is rare. It is sufficiently rare for occurrences to merit case-note review and diagnostic blood tests, unless an obvious explanation is found

    Ethical and policy issues in cluster randomized trials: rationale and design of a mixed methods research study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cluster randomized trials are an increasingly important methodological tool in health research. In cluster randomized trials, intact social units or groups of individuals, such as medical practices, schools, or entire communities – rather than individual themselves – are randomly allocated to intervention or control conditions, while outcomes are then observed on individual cluster members. The substantial methodological differences between cluster randomized trials and conventional randomized trials pose serious challenges to the current conceptual framework for research ethics. The ethical implications of randomizing groups rather than individuals are not addressed in current research ethics guidelines, nor have they even been thoroughly explored. The main objectives of this research are to: (1) identify ethical issues arising in cluster trials and learn how they are currently being addressed; (2) understand how ethics reviews of cluster trials are carried out in different countries (Canada, the USA and the UK); (3) elicit the views and experiences of trial participants and cluster representatives; (4) develop well-grounded guidelines for the ethical conduct and review of cluster trials by conducting an extensive ethical analysis and organizing a consensus process; (5) disseminate the guidelines to researchers, research ethics boards (REBs), journal editors, and research funders.</p> <p>Methods</p> <p>We will use a mixed-methods (qualitative and quantitative) approach incorporating both empirical and conceptual work. Empirical work will include a systematic review of a random sample of published trials, a survey and in-depth interviews with trialists, a survey of REBs, and in-depth interviews and focus group discussions with trial participants and gatekeepers. The empirical work will inform the concurrent ethical analysis which will lead to a guidance document laying out principles, policy options, and rationale for proposed guidelines. An Expert Panel of researchers, ethicists, health lawyers, consumer advocates, REB members, and representatives from low-middle income countries will be appointed. A consensus conference will be convened and draft guidelines will be generated by the Panel; an e-consultation phase will then be launched to invite comments from the broader community of researchers, policy-makers, and the public before a final set of guidelines is generated by the Panel and widely disseminated by the research team.</p

    KELT-21b: A Hot Jupiter Transiting the Rapidly Rotating Metal-poor Late-A Primary of a Likely Hierarchical Triple System

    Get PDF
    We present the discovery of KELT-21b, a hot Jupiter transiting the V = 10.5 A8V star HD 332124. The planet has an orbital period of P = 3.6127647 ± 0.0000033 days and a radius of 1.586-0.040+0.039 RJ. We set an upper limit on the planetary mass of at confidence. We confirmed the planetary nature of the transiting companion using this mass limit and Doppler tomographic observations to verify that the companion transits HD 332124. These data also demonstrate that the planetary orbit is well-aligned with the stellar spin, with a sky-projected spin-orbit misalignment of λ = -5.6-1.91.7. The star has Teff = 7598-8481 K, Mz.ast; = 1.458-0.028+0.029 M⊙, Rz.ast; = 1.638 ± 0.034 R⊙ and v sin I∗ = 146 km s-1, the highest projected rotation velocity of any star known to host a transiting hot Jupiter. The star also appears to be somewhat metal poor and α-enhanced, with [Fe/H] = -405-0.033+0.032 and [α/Fe] = 0.145 ± 0.053; these abundances are unusual, but not extraordinary, for a young star with thin-disk kinematics like KELT-21. High-resolution imaging observations revealed the presence of a pair of stellar companions to KELT-21, located at a separation of 1.″2 and with a combined contrast of ΔKs = 6.39 ± 0.06 with respect to the primary. Although these companions are most likely physically associated with KELT-21, we cannot confirm this with our current data. If associated, the candidate companions KELT-21 B and C would each have masses of ∼0.12 M⊙, a projected mutual separation of ∼20 au, and a projected separation of ∼500 au from KELT-21. KELT-21b may be one of only a handful of known transiting planets in hierarchical triple stellar systems
    corecore