189 research outputs found

    Potential Arctic connections to eastern North American cold winters

    Get PDF
    Far-field temperature and geopotential height fields associated with eastern North American early winter (DEC-JAN) extreme cold events are documented since 1950. Based on 19 cases of monthly extreme cold events, two large-scale patterns emerge. First, a strong Alaskan Ridge (AR) can develop with higher 700 hPa geopotential heights and positive temperature anomalies from Alaska south along the coastal northeastern Pacific Ocean, and low eastern North American geopotential height anomalies, the well-known North American ridge/trough pattern. A second subset of cases is a Greenland-Baffin Blocking (GBB) pattern that have positive temperature anomalies centered west of Greenland with a cut off tropospheric polar vortex feature over eastern North America; cold temperature anomalies extend from southeastern United States northwestward into central Canada. Both of these historical large-scale patterns associated with eastern North American cold events (AR and GBB) have the potential for future reinforcement by sea ice loss and associated warm Arctic regional temperature anomalies. An example of a GBB case is 15-22 December 2010 and an extreme AR case is in early 4-14 December 2016. In both cases lack of sea ice and warm temperature anomalies were colocated with local maximums in the geopotential height anomaly fields. Future regional delay of fall freeze up in the Chukchi Sea and Baffin Bay regions could reinforce these geopotential height patterns once they occur, but is not likely to initiate AR and GBB type events

    Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月30日(金) 国立国語研究所 2階多目的

    Interpretation of North Pacific Variability as a Short- and Long-Memory Process*

    Get PDF
    A major difficulty in investigating the nature of interdecadal variability of climatic time series is their shortness. An approach to this problem is through comparison of models. In this paper we contrast a first order autoregressive (AR(1)) model with a fractionally differenced (FD) model as applied to the winter averaged sea level pressure time series for the Aleutian low (the North Pacific (NP) index), and the Sitka winter air temperature record. Both models fit the same number of parameters. The AR(1) model is a ‘short memory ’ model in that it has a rapidly decaying autocovariance sequence, whereas an FD model exhibits ‘long memory ’ because its autocovariance sequence decays more slowly. Statistical tests cannot distinguish the superiority of one model over the other when fit with 100 NP or 146 Sitka data points. The FD model does equally well for short term prediction and has potentially important implications for long term behavior. In particular, the zero crossings of the FD model tend to be further apart, so they have more of a ‘regime’-like character; a quarter century interval between zero crossings is four times more likely with the FD than the AR(1) model. The long memory parameter δ for the FD model can be used as a characterization of regime-like behavior. The estimated δs for the NP index (spanning 100 years) and the Sitka time series (168 years) are virtually identical, and their size implies moderate long memory behavior. Although the NP index and the Sitka series have broadband low frequency variability and modest long memory behavior, temporal irregularities in their zero crossings are still prevalent. Comparison of the FD and AR(1) models indicates that regime-like behavior cannot be ruled out for North Pacific processes. 2 1

    Recent Arctic amplification and extreme mid-latitude weather

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature via the DOI in this record.The Arctic region has warmed more than twice as fast as the global average — a phenomenon known as Arctic amplification. The rapid Arctic warming has contributed to dramatic melting of Arctic sea ice and spring snow cover, at a pace greater than that simulated by climate models. These profound changes to the Arctic system have coincided with a period of ostensibly more frequent extreme weather events across the Northern Hemisphere mid-latitudes, including severe winters. The possibility of a link between Arctic change and mid-latitude weather has spurred research activities that reveal three potential dynamical pathways linking Arctic amplification to mid-latitude weather: changes in storm tracks, the jet stream, and planetary waves and their associated energy propagation. Through changes in these key atmospheric features, it is possible, in principle, for sea ice and snow cover to jointly influence mid-latitude weather. However, because of incomplete knowledge of how high-latitude climate change influences these phenomena, combined with sparse and short data records, and imperfect models, large uncertainties regarding the magnitude of such an influence remain. We conclude that improved process understanding, sustained and additional Arctic observations, and better coordinated modelling studies will be needed to advance our understanding of the influences on mid-latitude weather and extreme events

    Anomalous blocking over Greenland preceded the 2013 extreme early melt of local sea ice

    Get PDF
    The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade-1 earlier from 1979-2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013 below the 1981-2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt about 50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change

    Assessing Change-Points in Surface Air Temperature Over Alaska

    Get PDF
    An understanding of low frequency climatic variations is important for climatologists and planning by the public for informed climate mitigation and adaptation. This study applies recent advances in statistical change-point methodology to the variability of temperatures from seven stations in Alaska and the Pacific Decadal Oscillation (PDO) climate index for the past decades. We allow for the presence of multiple change-points in any given data series and provide confidence intervals for the identified change-points. We analyze the multiple station data based on season and temperature means and extremes. Physical processes responsible for specific identified temperature changes have been explored through geopotential height field and sea level pressure (SLP) maps. Predominantly, temperature and PDO shifts were observed during winter and spring in the 1940s and the 1970s. The study also identifies anomalous changes in summer that have occurred either in 1960s or in the 1980s. This is a significant deviation from the changes found in the 1970s for winter and spring. Except for a change in the 1940s at King Salmon Airport (KSA) and one in the 1970s at Homer Airport (HA), no other changes were found in fall. Also, there is lack of clear low frequency cyclic variability in the northern North Pacific region. Due to strong interactions and feedbacks, Alaskan sea surface temperature changes identified in this study can have lasting impact upon a number of factors including sea ice, arctic snow cover, atmospheric heat transport, clouds, and others

    Exploring links between Arctic amplification and mid-latitude weather

    Get PDF
    Copyright © 2013 American Geophysical UnionThis study examines observed changes (1979–2011) in atmospheric planetary-wave amplitude over northern mid-latitudes, which have been proposed as a possible mechanism linking Arctic amplification and mid-latitude weather extremes. We use two distinct but equally-valid definitions of planetary-wave amplitude, termed meridional amplitude, a measure of north-south meandering, and zonal amplitude, a measure of the intensity of atmospheric ridges and troughs at 45°N. Statistically significant changes in either metric are limited to few seasons, wavelengths, and longitudinal sectors. However in summer, we identify significant increases in meridional amplitude over Europe, but significant decreases in zonal amplitude hemispherically, and also individually over Europe and Asia. Therefore, we argue that possible connections between Arctic amplification and planetary waves, and implications of these, are sensitive to how waves are conceptualized. The contrasting meridional and zonal amplitude trends have different and complex possible implications for midlatitude weather, and we encourage further work to better understand these

    The melting arctic and midlatitude weather patterns: are they connected?

    Get PDF
    The potential of recent Arctic changes to influence hemispheric weather is a complex and controversial topic with considerable uncertainty, as time series of potential linkages are short (<10 yr) and understanding involves the relative contribution of direct forcing by Arctic changes on a chaotic climatic system. A way forward is through further investigation of atmospheric dynamic mechanisms. During several exceptionally warm Arctic winters since 2007, sea ice loss in the Barents and Kara Seas initiated eastward-propagating wave trains of high and low pressure. Anomalous high pressure east of the Ural Mountains advected Arctic air over central and eastern Asia, resulting in persistent cold spells. Blocking near Greenland related to low-level temperature anomalies led to northerly flow into eastern North America, inducing persistent cold periods. Potential Arctic connections in Europe are less clear. Variability in the North Pacific can reinforce downstream Arctic changes, and Arctic amplification can accentuate the impact of Pacific variability. The authors emphasize multiple linkage mechanisms that are regional, episodic, and based on amplification of existing jet stream wave patterns, which are the result of a combination of internal variability, lower-tropospheric temperature anomalies, and midlatitude teleconnections. The quantitative impact of Arctic change on midlatitude weather may not be resolved within the foreseeable future, yet new studies of the changing Arctic and subarctic low-frequency dynamics, together with additional Arctic observations, can contribute to improved skill in extended-range forecasts, as planned by the WMO Polar Prediction Project (PPP). © 2015 American Meteorological Society

    The recent shift in early summer Arctic atmospheric circulation

    Get PDF
    1 The last six years (2007-2012) show a persistent change in early summer Arctic wind patterns relative to previous decades. The persistent pattern, which has been previously recognized as the Arctic Dipole (AD), is characterized by relatively low sea-level pressure over the Siberian Arctic with high pressure over the Beaufort Sea, extending across northern North America and over Greenland. Pressure differences peak in June. In a search for a proximate cause for the newly persistent AD pattern, we note that the composite 700 hPa geopotential height field during June 2007-2012 exhibits a positive anomaly only on the North American side of the Arctic, thus creating the enhanced mean meridional flow across the Arctic. Coupled impacts of the new persistent pattern are increased sea ice loss in summer, long-lived positive temperature anomalies and ice sheet loss in west Greenland, and a possible increase in Arctic-subarctic weather linkages through higheramplitude upper-level flow. The North American location of increased 700 hPa positive anomalies suggests that a regional atmospheric blocking mechanism is responsible for the presence of the AD pattern, consistent with observations of unprecedented high pressure anomalies over Greenland since 2007. ©2012. American Geophysical Union. All Rights Reserved

    Results of the first Arctic Heat Open Science Experiment

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110)
    corecore