70 research outputs found

    Generalisation of Social Communication Skills by Autistic Children During Play-Based Assessments Across Home, School and an Unfamiliar Research Setting

    Get PDF
    \ua9 The Author(s) 2024.We investigated autistic children’s generalisation of social communication over time across three settings during a play-based assessment with different adults and explore the potential moderating effects on generalisation of age, nonverbal IQ and level of restricted and repetitive behaviours. The social communication abilities of 248 autistic children (2–11 years, 21% female, 22% single parent, 60% white) from three UK sites were assessed from 1984 video interactions in three contexts with three different interaction partners (parent/home, teaching assistant/school, researcher/clinic) at baseline, midpoint (+ 7m) and endpoint (+ 12m) within the Paediatric Autism Communication Trial-Generalised (PACT-G), a parent-mediated social communication intervention. Children’s midpoint social communication at home generalised to school at midpoint and to clinic at endpoint. Generalisation was stronger from home to school and clinic than school to home and clinic. Generalisation was not moderated by age, nonverbal IQ or restricted and repetitive behaviour. Broader child development did not explain the pattern of results. The current study is the largest study to date to explore generalisation with autistic children and provides novel insight into their generalisation of social communication skills. Further research is needed to gain a more comprehensive understanding of facilitators of generalisation across settings and interaction partners in order to develop targeted strategies for interventions to enhance outcomes for young autistic children

    Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability

    Get PDF
    Background: Autism spectrum disorder (ASD) is characterised by impairments in social communication and by a pattern of repetitive behaviours, with learning disability (LD) typically seen in up to 70% of cases. A recent study using the PPL statistical framework identified a novel region of genetic linkage on chromosome 16q21 that is limited to ASD families with LD. Methods: In this study, two families with autism and/or LD are described which harbour rare >1.6 Mb microdeletions located within this linkage region. The deletion breakpoints are mapped at base-pair resolution and segregation analysis is performed using a combination of 1M single nucleotide polymorphism (SNP) technology, array comparative genomic hybridisation (CGH), long-range PCR, and Sanger sequencing. The frequency of similar genomic variants in control subjects is determined through analysis of published SNP array data. Expression of CDH8, the only gene disrupted by these microdeletions, is assessed using reverse transcriptase PCR and in situ hybridisation analysis of 9 week human embryos. Results: The deletion of chr16: 60 025 584-61 667 839 was transmitted to three of three boys with autism and LD and none of four unaffected siblings, from their unaffected mother. In a second family, an overlapping deletion of chr16: 58 724 527-60 547 472 was transmitted to an individual with severe LD from his father with moderate LD. No copy number variations (CNVs) disrupting CDH8 were observed in 5023 controls. Expression analysis indicates that the two CDH8 isoforms are present in the developing human cortex. Conclusion: Rare familial 16q21 microdeletions and expression analysis implicate CDH8 in susceptibility to autism and LD

    Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism

    Get PDF
    The Autism Genome Project has assembled two large datasets originally designed for linkage analysis and genome-wide association analysis, respectively: 1,069 multiplex families genotyped on the Affymetrix 10 K platform, and 1,129 autism trios genotyped on the Illumina 1 M platform. We set out to exploit this unique pair of resources by analyzing the combined data with a novel statistical method, based on the PPL statistical framework, simultaneously searching for linkage and association to loci involved in autism spectrum disorders (ASD). Our analysis also allowed for potential differences in genetic architecture for ASD in the presence or absence of lower IQ, an important clinical indicator of ASD subtypes. We found strong evidence of multiple linked loci; however, association evidence implicating specific genes was low even under the linkage peaks. Distinct loci were found in the lower IQ families, and these families showed stronger and more numerous linkage peaks, while the normal IQ group yielded the strongest association evidence. It appears that presence/absence of lower IQ (LIQ) demarcates more genetically homogeneous subgroups of ASD patients, with not just different sets of loci acting in the two groups, but possibly distinct genetic architecture between them, such that the LIQ group involves more major gene effects (amenable to linkage mapping), while the normal IQ group potentially involves more common alleles with lower penetrances. The possibility of distinct genetic architecture across subtypes of ASD has implications for further research and perhaps for research approaches to other complex disorders as well

    Hemorrhage-Adjusted Iron Requirements, Hematinics and Hepcidin Define Hereditary Hemorrhagic Telangiectasia as a Model of Hemorrhagic Iron Deficiency

    Get PDF
    BACKGROUND: Iron deficiency anemia remains a major global health problem. Higher iron demands provide the potential for a targeted preventative approach before anemia develops. The primary study objective was to develop and validate a metric that stratifies recommended dietary iron intake to compensate for patient-specific non-menstrual hemorrhagic losses. The secondary objective was to examine whether iron deficiency can be attributed to under-replacement of epistaxis (nosebleed) hemorrhagic iron losses in hereditary hemorrhagic telangiectasia (HHT). METHODOLOGY/PRINCIPAL FINDINGS: The hemorrhage adjusted iron requirement (HAIR) sums the recommended dietary allowance, and iron required to replace additional quantified hemorrhagic losses, based on the pre-menopausal increment to compensate for menstrual losses (formula provided). In a study population of 50 HHT patients completing concurrent dietary and nosebleed questionnaires, 43/50 (86%) met their recommended dietary allowance, but only 10/50 (20%) met their HAIR. Higher HAIR was a powerful predictor of lower hemoglobin (p = 0.009), lower mean corpuscular hemoglobin content (p<0.001), lower log-transformed serum iron (p = 0.009), and higher log-transformed red cell distribution width (p<0.001). There was no evidence of generalised abnormalities in iron handling Ferritin and ferritin(2) explained 60% of the hepcidin variance (p<0.001), and the mean hepcidinferritin ratio was similar to reported controls. Iron supplement use increased the proportion of individuals meeting their HAIR, and blunted associations between HAIR and hematinic indices. Once adjusted for supplement use however, reciprocal relationships between HAIR and hemoglobin/serum iron persisted. Of 568 individuals using iron tablets, most reported problems completing the course. For patients with hereditary hemorrhagic telangiectasia, persistent anemia was reported three-times more frequently if iron tablets caused diarrhea or needed to be stopped. CONCLUSIONS/SIGNIFICANCE: HAIR values, providing an indication of individuals' iron requirements, may be a useful tool in prevention, assessment and management of iron deficiency. Iron deficiency in HHT can be explained by under-replacement of nosebleed hemorrhagic iron losses

    The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism.

    Get PDF
    International audienceAlthough multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions

    Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.

    Get PDF
    International audienceRare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation
    corecore