19 research outputs found
The inflationary trispectrum
We calculate the trispectrum of the primordial curvature perturbation
generated by an epoch of slow-roll inflation in the early universe, and
demonstrate that the non-gaussian signature imprinted at horizon crossing is
unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar
ratio. Therefore any primordial non-gaussianity observed in future microwave
background experiments is likely to have been synthesized by gravitational
effects on superhorizon scales. We discuss the application of Maldacena's
consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2,
replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in
Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and
Eq. (48) corrected. Some minor notational change
Non-Gaussian Inflationary Perturbations from the dS/CFT Correspondence
We use the dS/CFT correspondence and bulk gravity to predict the form of the
renormalized holographic three-point correlation function of the operator which
is dual to the inflaton field perturbation during single-field, slow-roll
inflation. Using Maldcaena's formulation of the correspondence, this correlator
can be related to the three-point function of the curvature perturbation
generated during single-field inflation, and we find exact agreement with
previous bulk QFT calculations. This provides a consistency check on existing
derivations of the non-Gaussianity from single-field inflation and also yields
insight into the nature of the dS/CFT correspondence. As a result of our
calculation, we obtain the properly renormalized dS/CFT one-point function,
including boundary contributions where derivative interactions are present in
the bulk. In principle, our method may be employed to derive the n-point
correlators of the inflationary curvature perturbation within the context of
(n-1)th-order perturbation theory, rather than nth-order theory as in
conventional approaches.Comment: 23 pages, uses iopart.cls. Replaced with version accepted by JCAP;
some clarifications in the introduction, and references adde
Planck intermediate results XVI. Profile likelihoods for cosmological parameters
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the CDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit \u3c3mv 640:26 eV (95% confidence) from the CMB+lensing+BAO data combination. \ua9 ESO 2014
Predictions for Nongaussianity from Nonlocal Inflation
In our previous work the nonlinearity parameter f_NL, which characterizes
nongaussianity in the cosmic microwave background, was estimated for a class of
inflationary models based on nonlocal field theory. These models include p-adic
inflation and generically have the remarkable property that slow roll inflation
can proceed even with an extremely steep potential. Previous calculations found
that large nongaussianity is possible; however, the technical complications
associated with studying perturbations in theories with infinitely many
derivatives forced us to provide only an order of magnitude estimate for f_NL.
We reconsider the problem of computing f_NL in nonlocal inflation models,
showing that a particular choice of field basis and recent progress in
cosmological perturbation theory makes an exact computation possible. We
provide the first quantitatively accurate computation of the bispectrum in
nonlocal inflation, confirming our previous claim that it can be observably
large. We show that the shape of the bispectrum in this class of models makes
it observationally distinguishable from Dirac-Born-Infeld inflation models.Comment: 26 pages, 5 figures; references added, sign convention for f_NL
clarified, minor correction