4,310 research outputs found

    A New Look at Adaptive Body Coloration and Color Change in "Common Green Lacewings” of the Genus Chrysoperla (Neuroptera: Chrysopidae)

    Get PDF
    Green lacewings in the genus Chrysoperla are not always green. They can be yellow (autosomal recessive mutant); change from whitish-yellow to green as young adults; or temporarily turn yellowish, reddish, or brown during diapause. New findings on a yellow mutant in a natural population in southern California and on species-specific diapause coloration are presented, old findings are reviewed, and the adaptive value of color variability and color change in the genus is discusse

    The COMPLETE Survey of Star-Forming Regions: Phase I Data

    Get PDF
    We present an overview of data available for the Ophiuchus and Perseus molecular clouds from ``Phase I'' of the COMPLETE Survey of Star-Forming Regions. This survey provides a range of data complementary to the Spitzer Legacy Program ``From Molecular Cores to Planet Forming Disks.'' Phase I includes: Extinction maps derived from 2MASS near-infrared data using the NICER algorithm; extinction and temperature maps derived from IRAS 60 and 100um emission; HI maps of atomic gas; 12CO and 13CO maps of molecular gas; and submillimetre continuum images of emission from dust in dense cores. Not unexpectedly, the morphology of the regions appears quite different depending on the column-density tracer which is used, with IRAS tracing mainly warmer dust and CO being biased by chemical, excitation and optical depth effects. Histograms of column-density distribution are presented, showing that extinction as derived from 2MASS/NICER gives the closest match to a log-normal distribution as is predicted by numerical simulations. All the data presented in this paper, and links to more detailed publications on their implications are publically available at the COMPLETE website.Comment: Accepted by AJ. Full resolution version available from: http://www.cfa.harvard.edu/COMPLETE/papers/complete_phase1.pd

    Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease.

    Get PDF
    The CABLES1 cell cycle regulator participates in the adrenal-pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing's disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene

    O/IR Polarimetry for the 2010 Decade (GAN): Science at the Edge, Sharp Tools for All

    Full text link
    Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of Galactic science. Community-based White Paper to Astro2010 in response to the call for such papers.Comment: White Paper to the Galactic Neighborhood (GAN) Science Frontiers Panel of the Astro2010 Decadal Surve

    Type II Supernovae as Probes of Cosmology

    Full text link
    - Constraining the cosmological parameters and understanding Dark Energy have tremendous implications for the nature of the Universe and its physical laws. - The pervasive limit of systematic uncertainties reached by cosmography based on Cepheids and Type Ia supernovae (SNe Ia) warrants a search for complementary approaches. - Type II SNe have been shown to offer such a path. Their distances can be well constrained by luminosity-based or geometric methods. Competing, complementary, and concerted efforts are underway, to explore and exploit those objects that are extremely well matched to next generation facilities. Spectroscopic follow-up will be enabled by space- based and 20-40 meter class telescopes. - Some systematic uncertainties of Type II SNe, such as reddening by dust and metallicity effects, are bound to be different from those of SNe Ia. Their stellar progenitors are known, promising better leverage on cosmic evolution. In addition, their rate - which closely tracks the ongoing star formation rate - is expected to rise significantly with look- back time, ensuring an adequate supply of distant examples. - These data will competitively constrain the dark energy equation of state, allow the determination of the Hubble constant to 5%, and promote our understanding of the processes involved in the last dramatic phases of massive stellar evolution.Comment: Science white paper, submitted to the Decadal committee Astro201

    Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Full text link
    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.Key PointsTotal mercury and methylmercury concentrations and fluxes are examined across an elevational gradient on an Adirondack, New York mountainMethylmercury concentrations across the elevational gradient are greatest in midelevation coniferous zonesSoil methylmercury concentrations are driven by the internal processing of mercury, rather than external inputs of methylmercuryPlain Language SummaryOnce mercury is emitted into the atmosphere by anthropogenic sources, it can be deposited onto the Earth’s surface. This mercury can then be converted to its toxic form of methylmercury by microbes in the soil and can accumulate in birds, altering physiology, behavior, and reproduction. We examined soils from Whiteface Mountain in the Adirondack region of New York State, USA to determine patterns in the production of methylmercury. We found that methylmercury in soils was highest in the mid‐elevation coniferous forests of the mountain and that the concentration appeared to be driven by soil microbes rather than direct deposition of mercury from the atmosphere. The finding of peak methylmercury at mid‐elevations was consistent with previous studies showing peak bird mercury concentrations at the same elevation. Thus, reductions in methylmercury concentrations in these forests is important to reducing bird mercury concentrations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/1/jgrg20832_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/2/jgrg20832-sup-0001-2016JG003721-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/3/jgrg20832.pd

    Intensity Mapping of Lyman-alpha Emission During the Epoch of Reionization

    Get PDF
    We calculate the absolute intensity and anisotropies of the Lyman-alpha radiation field present during the epoch of reionization. We consider emission from both galaxies and the intergalactic medium (IGM) and take into account the main contributions to the production of Lyman-alpha photons: recombinations, collisions, continuum emission from galaxies and scattering of Lyman-n photons in the IGM. We find that the emission from individual galaxies dominates over the IGM with a total Lyman-alpha intensity (times frequency) of about (1.43-3.57)x10^{-8} erg s^{-1} cm^{-2} sr^{-1} at a redshift of 7. This intensity level is low so it is unlikely that the Lyman-\alpha background during reionization can be established by an experiment aiming at an absolute background light measurement. Instead we consider Lyman-\alpha intensity mapping with the aim of measuring the anisotropy power spectrum which has rms fluctuations at the level of 1 x 10^{-16} [erg s^[-1} cm^{-2} sr^{-1}]^2 at a few Mpc scales. These anisotropies could be measured with a spectrometer at near-IR wavelengths from 0.9 to 1.4 \mu m with fields in the order of 0.5 to 1 sq. degrees. We recommend that existing ground-based programs using narrow band filters also pursue intensity fluctuations to study statistics on the spatial distribution of faint Lyman-\alpha emitters. We also discuss the cross-correlation signal with 21 cm experiments that probe HI in the IGM during reionization. A dedicated sub-orbital or space-based Lyman-\alpha intensity mapping experiment could provide a viable complimentary approach to probe reionization, when compared to 21 cm experiments, and is likely within experimental reach.Comment: 18 pages, 17 figure
    corecore