25 research outputs found

    Thickness-dependent optimization of Er3+ light emission from silicon-rich silicon oxide thin films

    Get PDF
    This study investigates the influence of the film thickness on the silicon-excess-mediated sensitization of Erbium ions in Si-rich silica. The Er3+ photoluminescence at 1.5 μm, normalized to the film thickness, was found five times larger for films 1 μm-thick than that from 50-nm-thick films intended for electrically driven devices. The origin of this difference is shared by changes in the local density of optical states and depth-dependent interferences, and by limited formation of Si-based sensitizers in "thin" films, probably because of the prevailing high stress. More Si excess has significantly increased the emission from "thin" films, up to ten times. This paves the way to the realization of highly efficient electrically excited devices

    Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters

    Get PDF
    This study reports the estimation of the inverted Er fraction in a system of Er doped silicon oxide sensitized by Si nanoclusters, made by magnetron sputtering. Electroluminescence was obtained from the sensitized erbium, with a power efficiency of 10¿2 %. By estimating the density of Er ions that are in the first excited state, we find that up to 20% of the total Er concentration is inverted in the best device, which is one order of magnitude higher than that achieved by optical pumping of similar materials

    Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures

    Get PDF
    Blue green to near-IR switching electroluminescence (EL) has been achieved in a metal-oxide-semiconductor light emitting device, where the dielectric has been replaced by a Si-rich silicon oxide/nitride bilayer structure. To form Si nanostructures, the layers were implanted with Si ions at high energy, resulting in a Si excess of 19%, and subsequently annealed at 1000 °C. Transmission electron microscopy and EL studies allowed ascribing the blue-green emission to the Si nitride related defects and the near-IR band with the emission of the Si-nanoclusters embedded into the SiO2 layer. Charge transport analysis is reported and allows for identifying the origin of this twowavelength switching effect

    Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation

    Get PDF
    The electroluminescence (EL) at 1.54 µm of metal-oxide-semiconductor (MOS) devices with Er3+ ions embedded in the silicon-rich silicon oxide (SRSO) layer has been investigated under different polarization conditions and compared with that of erbium doped SiO2 layers. EL time-resolved measurements allowed us to distinguish between two different excitation mechanisms responsible for the Er3+ emission under an alternate pulsed voltage signal (APV). Energy transfer from silicon nanoclusters (Si-ncs) to Er3+ is clearly observed at low-field APV excitation. We demonstrate that sequential electron and hole injection at the edges of the pulses creates excited states in Si-ncs which upon recombination transfer their energy to Er3+ ions. On the contrary, direct impact excitation of Er3+ by hot injected carriers starts at the Fowler-Nordheim injection threshold (above 5 MV cm−1) and dominates for high-field APV excitation

    Electrical behavior of MIS devices based on Si nanoclusters embedded in SiOxNy and SiO2 films

    Get PDF
    We examined and compared the electrical properties of silica (SiO2) and silicon oxynitride (SiOxNy) layers embedding silicon nanoclusters (Sinc) integrated in metal-insulator-semiconductor (MIS) devices. The technique used for the deposition of such layers is the reactive magnetron sputtering of a pure SiO2 target under a mixture of hydrogen/argon plasma in which nitrogen is incorporated in the case of SiOxNy layer. Al/SiOxNy-Sinc/p-Si and Al/SiO2-Sinc/p-Si devices were fabricated and electrically characterized. Results showed a high rectification ratio (>104) for the SiOxNy-based device and a resistive behavior when nitrogen was not incorporating (SiO2-based device). For rectifier devices, the ideality factor depends on the SiOxNy layer thickness. The conduction mechanisms of both MIS diode structures were studied by analyzing thermal and bias dependences of the carriers transport in relation with the nitrogen content

    Elaboration et étude de la structure et des mécanismes de luminescence de nanocristaux de silicium de taille contrôlée.

    No full text
    The mechanisms of light emission of size-controlled silicon nanocrystals (Si-nc) are studied in this work. The Si-nc are confined in a SiO2 matrix. The films structure is characterized by infrared absorption spectroscopy, X-ray diffraction and transmission electron microscopy. The size distribution of the Si-nc is measured, showing that the size is controlled with a narrow dispersion.The luminescence mechanisms are studied by continuous wave and time-resolved photoluminescence spectroscopy from 4 K to 300 K. Correlated with structure investigations, the results show that the matrix quality and the Si-nc size control the luminescence properties. The recombination mechanisms of the carriers are studied. Finally, the electronic transport in the films is characterised. The electroluminescence is studied and show the role played by the Si-nc on the luminescence.Ce travail porte sur l'étude des mécanismes de luminescence de nanocristaux de silicium (nc-Si) de taille contrôlée. Les matériaux étudiés sont des couches minces de SiO2 contenant des nc-Si confinés. La structure des films est caractérisée par spectroscopie d'absorption infrarouge, diffraction de rayons X et microscopie électronique à transmission. La distribution en taille des nc-Si est mesurée, montrant que la taille est contrôlée avec une faible dispersion.Les mécanismes de luminescence sont étudiés par spectroscopie de photoluminescence continue et résolue en temps de 4 K à 300 K. Corrélés à l'étude de structure, les résultats de photoluminescence montrent que la qualité de la matrice et la taille des nc-Si contrôlent les propriétés de luminescence des nc-Si. Les mécanismes de recombinaison des porteurs sont étudiés. Enfin, le transport électrique dans les couches est caractérisé. L'électroluminescence est observée et montre le rôle joué par les nc-Si sur la luminescence

    Copropagating pump and probe experiments on Si-nc in SiO2 rib waveguides doped with Er: The optical role of non-emitting ions

    Get PDF
    We present a study that demonstrates the limits for achieving net optical gain in an optimized waveguide where Si nanoclusters in SiO2 codoped with Er3+ are the active material. By cross correlating absorption losses measurements with copropagant pump (λpump = 1.48 µm) and probe (λprobe = 1.54 µm) experiments we reveal that the role of more than 80% of the total Er3+ population present on the material (intended for optical amplification purposes) is to absorb the propagating light, since it is unfeasible to invert it

    Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions.

    Get PDF
    We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically driven devices using Si-ncs or Si-excess mediated EL

    Thickness-dependent optimization of Er<sup>3+ </sup>light emission from silicon-rich silicon oxide thin films

    No full text
    Abstract This study investigates the influence of the film thickness on the silicon-excess-mediated sensitization of Erbium ions in Si-rich silica. The Er3+ photoluminescence at 1.5 &#956;m, normalized to the film thickness, was found five times larger for films 1 &#956;m-thick than that from 50-nm-thick films intended for electrically driven devices. The origin of this difference is shared by changes in the local density of optical states and depth-dependent interferences, and by limited formation of Si-based sensitizers in "thin" films, probably because of the prevailing high stress. More Si excess has significantly increased the emission from "thin" films, up to ten times. This paves the way to the realization of highly efficient electrically excited devices.</p
    corecore