92 research outputs found

    Strong-field dipole resonance. I. Limiting analytical cases

    Full text link
    We investigate population dynamics in N-level systems driven beyond the linear regime by a strong external field, which couples to the system through an operator with nonzero diagonal elements. As concrete example we consider the case of dipolar molecular systems. We identify limiting cases of the Hamiltonian leading to wavefunctions that can be written in terms of ordinary exponentials, and focus on the limits of slowly and rapidly varying fields of arbitrary strength. For rapidly varying fields we prove for arbitrary NN that the population dynamics is independent of the sign of the projection of the field onto the dipole coupling. In the opposite limit of slowly varying fields the population of the target level is optimized by a dipole resonance condition. As a result population transfer is maximized for one sign of the field and suppressed for the other one, so that a switch based on flopping the field polarization can be devised. For significant sign dependence the resonance linewidth with respect to the field strength is small. In the intermediate regime of moderate field variation, the integral of lowest order in the coupling can be rewritten as a sum of terms resembling the two limiting cases, plus correction terms for N>2, so that a less pronounced sign-dependence still exists.Comment: 34 pages, 1 figur

    Infrared Laser Driven Double Proton Transfer. An Optimal Control Theory Study

    Full text link
    Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.Comment: 9 figure

    Adiabatic perturbation theory and geometry of periodically-driven systems

    Full text link
    We give a systematic review of the adiabatic theorem and the leading non-adiabatic corrections in periodically-driven (Floquet) systems. These corrections have a two-fold origin: (i) conventional ones originating from the gradually changing Floquet Hamiltonian and (ii) corrections originating from changing the micro-motion operator. These corrections conspire to give a Hall-type linear response for non-stroboscopic (time-averaged) observables allowing one to measure the Berry curvature and the Chern number related to the Floquet Hamiltonian, thus extending these concepts to periodically-driven many-body systems. The non-zero Floquet Chern number allows one to realize a Thouless energy pump, where one can adiabatically add energy to the system in discrete units of the driving frequency. We discuss the validity of Floquet Adiabatic Perturbation Theory (FAPT) using five different models covering linear and non-linear few and many-particle systems. We argue that in interacting systems, even in the stable high-frequency regimes, FAPT breaks down at ultra slow ramp rates due to avoided crossings of photon resonances, not captured by the inverse-frequency expansion, leading to a counter-intuitive stronger heating at slower ramp rates. Nevertheless, large windows in the ramp rate are shown to exist for which the physics of interacting driven systems is well captured by FAPT.The authors would like to thank M. Aidelsburger, M. Atala, E. Dalla Torre, N. Goldman, M. Heyl, D. Huse, G. Jotzu, C. Kennedy, M. Lohse, T. Mori, L. Pollet, M. Rudner, A. Russomanno, and C. Schweizer for fruitful discussions. This work was supported by AFOSR FA9550-16-1-0334, NSF DMR-1506340, ARO W911NF1410540, and the Hungarian research grant OTKA Nos. K101244, K105149. M. K. was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are pleased to acknowledge that the computational work reported in this paper was performed on the Shared Computing Cluster which is administered by Boston University's Research Computing Services. The authors also acknowledge the Research Computing Services group for providing consulting support which has contributed to the results reported within this paper. The study of the driven non-integrable transverse-field Ising model was carried out using QuSpin [185] - an open-source state-of-the-art Python package for dynamics and exact diagonalization of quantum many body systems, available to download here. (FA9550-16-1-0334 - AFOSR; DMR-1506340 - NSF; W911NF1410540 - ARO; K101244 - Hungarian research grant OTKA; K105149 - Hungarian research grant OTKA; DE-AC02-05CH11231 - Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab)https://arxiv.org/pdf/1606.02229.pd

    Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied.</p> <p>Methods</p> <p>ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6.</p> <p>Results</p> <p>The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p < 0.01). The RI likewise revealed a statistically significant superiority of Xenon 5 minutes post extubation (p < 0.01). The Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001).</p> <p>Conclusions</p> <p>The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results.</p> <p>Trial Registration</p> <p>The trial was registered with the number ISRCTN01110844 <url>http://www.controlled-trials.com/isrctn/pf/01110844</url>.</p

    Reaction Rates

    No full text
    Manthe U. Reaction Rates. In: W. J, ed. Lecture notes in Chemistry, Vol. 77: Methods in Reaction Dynamics. Berlin/Heidelberg: Springer-Verlag; 2001: 167
    • …
    corecore