Y. Shizukuda, E.H. Sonnenblick, D.L. Geenen, A.C. Borczuk, R.N. Kitais, P.M. Buttrick. Albert Einstein College of Medicine, Bronx, NY, USA

Background: Both persistent tachycardia and #-adrenergic stimulation cause progressive heart failure. To explore possible mechanisms, we asked whether either atimulus was associated by apoptotic myocardial cell loss.

Methods: Four groups of rats treated for 24 hrs were compared: Control (C); Isoproterenol (Iso) of either 40 µg/kg/hr or 400 µg/kg/hr via Alze! minipump; mechanical pacing (500 bpm). Following treatment, hearts were formalin fixed, embedded in paraffin and cardiocyte apoptosis (Apo) was evaluated using TUNEL method on 5 µm sections from the mid-ventricle wall.

Results:

72	C	tsa 400	Iso 40	Pacing
HR (bpm)	424 ± 16	517 ± 21'	497 ± 8	509 ± 6'
SBP (mmHg)	85 ± 6	82 t 2	84 ± 7	97 ± 6
Apo (per area)	0.3 ± 0.3	7.9 ± 2.5	0.8 ± 0.5	1.7 ± 0.7
Apo (per cells)	0.04 ± 0.04	1.26 ± 0.39	0.13 ± 0.08	0.23 ± 0.08
Number of rats	5	4	6	5

(Data are mean \pm SEM. SBP; systolic blood pressure, per area; per cm 2 , per cells; per 10,000 cardiocytes, 'p < 0.05 vs. C).

HR was increased by Iso 400, Iso 40, and pacing. SBP was similar amongst all four groups. Apo was increased by Iso 400, but not any the other

Conclusions: Thus, 24 hours of continuous fl-adrenergic stimulation induces significant cardiocyte apoptosis and this effect is not mediated solely by an increase in HR.

9:15

831-4

Alterations in Myocardial β-Adrenoceptor Subtypes and Signal Transduction Pathway in Nerve Growth **Factor Overexpressing Transgenic Mice**

E. Dong, A. Brood, H.J. Federoff, C.-S. Liang. University of Rochester Medical Center, Rochester, NY, USA

Background: We have established a transgenic mouse model in which selective overexpression of nerve growth factor (NGF) results in cardioselective sympathetic hyperinnervation and cardiac hypertrophy.

Methods: To determine whether the cardioselective sympathetic hyperinnervation afters the norepinephrine (NE) uptake function and myocardial β-adrenoceptor (βAR)-coupled adenylyl cyclase signal transduction system, we measured cardiac NE uptake site density (fmol/mg) by 3H-nisoxetine binding, total β AR and β_1 , β_2 subtype density (fmol/mg) by ¹²⁵ L-iodocyanopindolol radioligand assay, dissociation constant (K1, nM) of the #AR for isoproferenol, and maximum increase in cyclic AMP (cAMP, pmol/mg/min) produced by isoproterenol in 4 week-old control and transgenic mice.

Results:

	NE-uptake	βAR	t ₂	Kı	cAMP
Control	186 ± 55	35 ± 5	12 ± 2	0.17 ± 0.05	4.6 ± 0.8
NGF	1706 ± 221°	55 ± 5°	28 ± 3°	0.39 ± 0.07	1.6 ± 0.2

Values are means ± SE. *p < 0.05, vs. Control. N = 11.

Conclusion: Cardioselective sympathetic hyperinnervation in the transgenic mouse causes an increase in NE-uptake sites, an increase in \$2AR density, and no change in \$1AR density. The adenytyl cyclase response to isoproterenol, however, is reduced, probably because of the marked uncoupling of \$AR to G-protein. The findings show that increased cardiac NE causes #AR subsensitivity without receptor downregulation.

9:30

831-5 Age-dependent Decrease in Human Cardiac β-Adrenergic and Muscarinic Receptor Function: In Vitro and in Vivo Study

O.-E. Brodde, K. Becker, J. Jakubetz, U. Konschak, U. Poller, J. Radke, H.-R. Zerkowski. University of Halle-Wittenberg, Halle, Germany

In ageing cardiac β -adrenergic receptor (AR) function declines while little is known on muscarinic M_2 -R changes. To study possible mechanisms of β -AR and M2-R changes with age we assessed a) in vitro in right atria (RA) from 91 patients of different age (5 d-83 yrs) without apparent heart failure β -AR and $M_2\text{-R}$ densities. 10 μM GTP. 100 μM isoprenaline (ISO). 10 mM NaF

and 10 mM Mn**-activated and carbachol (CAR 10 nM-100 µM)-inhibited adenylyl cyclase (AC) activity and b) in vivo in 6 young (<30 yrs) and 6 older (60 yrs) volunteers ISO-infusion (3.5-35 ng/kg/min)-caused increase and piretizepine (PIR 0.32 and 0.64 µg i.v. bolus)-caused decrease in heart rate (HR).

Results: 1) #-AR: In vitro #-AR density and -subtype distribution did not change while GTP, ISO, NaF and Mn**-activated AC declined with age. In vivo ISO-infusion evoked HR-increases were not different between young and elder volunteers; after pretreatment with atropine, however, ISO-evoked HR-increases were markedly enhanced in young but not in elder volunteers. 2) M2-R: In vitro M2-R density was significantly negative correlated with age: concomitantly CAR-evoked AC-inhibition declined with age, in vivo PIR-induced decrease in ISO-evoked HR-increase was significantly reduced in the elderly.

Conclusion: In human RA #-AR and M2-R function decreases with age The /I-AR decrease is due to a reduced activity of AC-catalytic unit; the M2-R decrease is due to a reduced R-density. The decrease in M2-R density is accompanied by a blunted negative chronotropic response to M2-FI stimulation in vivo, while the decrease in fi-AR function can be demonstrated in vivo only when the counterregulatory action of parasympathetic activity is removed

9:45

831-6

Echocardiographic and Histopathological Characterization of Young and Old Transgenic Mice Over-expressing the Human \$1-Adrenergic Receptor

J.D. Port, H.D. Weinberger, J.D. Bisognano, O.A. Knudson, T.J. Bohlmeyer, A. Pende, M.R. Bristow. University of Colorado HSC, Denver, CO, USA

Background: The #1-adrenergic receptor (#1-AR) is central to regulation of myocardial contractility. In the failing heart, the #1-AR is chronically over-stimulated due to high concentrations of norepinephrine. Therefore, we wished to examine the effect of constitutive #1-AR over-expression in myocardial

Methods: The human #1-AR was overexpressed in transgenic (TG) mice, in a cardiac-specific context, using an a-myosin heavy chain promoter. Receptor expression ranged between 1 and 2.5 pmol/mg membrane protein. Cardiac function (echocardiography) and histopathology (Trichrome and H&E) were examined at 4-5 months (young (yng)), and 8-20 months of age (old).

Results: Old TG mice had significantly greater left ventricular chamber sizes in both systole (LVIDS) and diastole (LVIDD) and a significantly reduced fractional shortening (FS) compared to young and old control and to young

	CON-yng	TG-yng	CON-old	TG-old
FS (%)	58 : 1	59 ± 1	60 ± 2	30 ± 4
LVIDS (mm)	15 ± 0.02	13 ± 0.1	13 ± 0.03	3.2 t 0.4
LVIDD (mm)	3.5 ± 0.03	3.2 ± 0.1	3.4 ± 0.2	4.5 ± 0.3

(p < 0.05 by ANOVA)

Histopathologically, both young and old TG mice had substantial myocardial remodeling with myocyte hypertrophy and large areas of interstitial replacement fibrosis.

Conclusions: Constitutive cardiac-directed over-expression of the #1-AR in TG mice appears to produce a time-dependent remodeling resulting in ventricular dilatation and eventual cardiac failure. The \$1-AR transgenic mouse should be a highly useful model of adrenergically mediated dilated cardiomyopathy.

832

Coronary Blood Flow and Endothelial Dysfunction

Tuesday, March 31, 1998, 8:30 a.m.-10:00 a.m. Georgia World Congress Center, Room 254W

8:30

832-1

Effect of the Menstrual Cycle on Endothelium-dependent Vasodilation of the Brachial

J. English, G. Green, LO. Jacobs, T.C. Andrews. Willord Hall Medical Center, Lackland AFB. TX: The University of Texas Southwestern Medical Center, Dallas, TX, USA

Background: Estrogen alone or in concert with progesterone therapy has beneficial effects on endothelium-dependent vasodilation in postmenopausal women and such improvement in endothelial function may explain the reduction in cardiovascular events associated with hormone replacement therapy.