43 research outputs found

    Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability

    Get PDF
    Bacteria possess physicochemical surface properties such as hydrophobicity, Lewis acid/base and charge which are involved in physicochemical interactions between cells and interfaces. Moreover, food matrices are complex and heterogeneous media, with a microstructure depending on interactions between the components in media (van der Waals, electrostatic or structural forces, etc.). Despite the presence of bacteria in fermented products, few works have investigated how bacteria interact with other food components. The objective of the present study was to determine the effects of the surface properties of lactic acid bacteria on the stability of model food emulsions. The bacteria were added to oil/water emulsions stabilized by milk proteins (sodium caseinate, whey proteins concentrate or whey proteins isolate) at different pH (from 3 to 7.5). The effect of bacteria on the emulsions stability depended on the surface properties of strains and also on the characteristics of emulsions. Flocculation and aggregation phenomena were observed in emulsion at pHs for which the bacterial surface charge was opposed to the one of the proteins. The effects of bacteria on the stability of emulsion depended also on the concentration of cations present in media such as Ca2+. These results show that the bacteria through their surface properties could interact with other compounds in matrices, consequently affecting the stability of emulsions. The knowledge and choice of bacteria depending on their surface properties could be one of the important factors to control the stability of matrices such as fermentation media or fermented products.Région Bourgogne, Agence Universitaire de la Francophonie

    Non-polar lipids characterization of Quinoa (Chenopodium quinoa) seed by comprehensive two-dimensional gas chromatography with flame ionization/mass spectrometry detection and non-aqueous reversed-phase liquid chromatography with atmospheric pressure chem

    No full text
    A chemical characterization of major lipid components, namely, triacylglycerols, fatty acids and the unsaponifiable fraction, in a Quinoa seed lipids sample is reported. To tackle such a task, non-aqueous reversed-phase high-performance liquid chromatography with mass spectrometry detection was employed. The latter was interfaced with atmospheric pressure chemical ionization for the analysis of triacylglycerols. The main triacylglycerols (>10%) were represented by OLP, OOL and OLL (P = palmitoyl, O = oleoyl, L = linoleoyl); the latter was present in the oil sample at the highest percentage (18.1%). Furthermore, fatty acid methyl esters were evaluated by gas chromatography with flame ionization detection. 89% of the total fatty acids was represented by unsaturated fatty acid methyl esters with the greatest percentage represented by linoleic and oleic acids accounting for approximately 48 and 28%, respectively. An extensive characterization of the unsaponifiable fraction of Quinoa seed lipids was performed for the first time, by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection. Overall, 66 compounds of the unsaponifiable fraction were tentatively identified, many constituents of which (particularly sterols) were confirmed by using gas chromatography with high-resolution time-of-flight mass spectrometry
    corecore