57 research outputs found

    Preliminary Results: Complementary C4:C3 Grazing Systems

    Get PDF
    Native warm-season grasses (NWSG) can produce high quality forage and high rates of gain for beef cattle. However, little data is available on how NWSG affect the productivity of cow-calf operations on a farm scale. Therefore, we implemented an experiment at three sites, Booneville, AR, Linneus, MO and Louisville, TN, with cow-calf pairs (mature cows over ≥ 3 years old, spring calving). We evaluated two forage systems that mix either a drought or drought/flood tolerant native C4 species [big bluestem (BB) blend or eastern gamagrass (EG)] with a cool-season perennial, tall fescue (TF), and compared them to the most frequently used forage system within the Fescue Belt region, one that relies on TF only. The TN study site contains EG, with big bluestem at the MO site, and both big bluestem and EG at the AR site. Cattle (n = 12 pairs per experimental unit) were weighed yearly before initial grazing and again after final removal. Forage samples (n = 15) were collected at the beginning of grazing and once every twenty-eight days during the grazing season, and finally, at the conclusion of grazing. Harvested forages were tested for forage nutritive content (CP, NDF, ADF) using NIRS. Hay produced per forage system was documented by counting bales and weights of subsamples. The AR site was not able to participate in the first year of the study. Overall, there were no statistical differences between treatments in the first grazing season for either cattle or forage measures. However, cattle spent less time on NWSG in 2021 at the TN site to enable renovation of EG to be completed. Also, TF stands had a significant proportion of volunteer warm-season grasses within the pastures. Data from the second year of the study are currently under analysis

    Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3-xClx) perovskites powders

    Get PDF
    The authors are highly thankful for the financial support of Higher Education Commission (HEC) Pakistan through the equipment/research grants (6976/Federal/NRPU/R&D/HEC/2017), (20-3071/NRPU/R&D/HEC/13). Author ZS acknowledges HEC for indigenous PhD Fellowship Phase-II, Batch-II, 2013, PIN 213-66018-2PS2-127 and International Research Support Initiative Programme (IRSIP). Author LKJ acknowledges support from a Marie Skłodowska-Curie Individual Fellowship (European Commission) (MCIF: No. 745776).This work demonstrates a route to making mixed halide perovskite powders at room temperature by the anti-solvent-assisted crystallization method. Although, mixed halide CH3NH3PbBr3−xClx perovskites have been prepared by different methods, however, to the best of our knowledge the anti-solvent-assisted crystallization method is employed here for the first time to prepare mixed halide CH3NH3PbBr3−xClx perovskite powders. Solution-processed methyl ammonium lead tribromide CH3NH3PbBr3 (x = 0) and different amounts of chloride (Cl) containing mixed halide perovskites (CH3NH3PbBr3−xClx) were prepared for compositions of x = 0.5, 1, 1.25, 1.75. It reveals that bulk CH3NH3PbBr3−xClx samples are highly crystalline and exists in pure single cubic phase with an increased tolerance factor as compared to pure CH3NH3PbBr3. The CH3NH3PbBr3 perovskite has space-group Pm-3 m and a cell parameter of 5.930 Å (volume = 206 Å). The synthesis route adopted here gives access to hybrid perovskites powders with high Cl content and hence enables the band gap to be precisely tuned over a range from 2.26 to 2.49 eV. The powder samples display the subtle shifts in the emission spectra and the photoluminescence kinetics exhibits a decrease in average lifetime by increasing the Cl contents due to the presence of trap states in the structures that encourage non-radiative recombination of charge carrier. Conventionally, the CH3NH3PbBr3-based inverted solar cell architecture is prepared via mixing of the CH3NH3Br and PbBr2 precursors. In contrast, herein, the precursor solutions are directly prepared from the CH3NH3PbBr3 powder and the active layer of the inverted perovskite solar cells are then spin coated using this solution. The high Voc value of the fabricated solar cells potentially makes it a promising candidate for tandem photovoltaic, photocatalytic water splitting, and semi-transparent photovoltaic applications.PostprintPostprintPeer reviewe

    Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management

    Get PDF
    The North Central Education and Research Activity Committee (NCERA-59) was formed in 1952 to address how soil organic matter formation and management practices affect soil structure and productivity. It is in this capacity that we comment on the science supporting soil quality and associated soil health assessment for agricultural lands with the goal of hastening progress in this important field. Even though the suite of soil quality indicators being applied by U.S. soil health efforts closely mirrors the “minimum data set” we developed and recommended in the mid-1990s, we question whether the methods or means for their selection and development are sufficient to meet current and emerging soil health challenges. The rush to enshrine a standard suite of dated measures may be incompatible with longer-term goals. Legitimate study of soil health considers soil change accrued over years to decades that influence on- and off-site function. Tailoring of methods to local conditions is needed to effectively apply and interpret indicators for different soil resource regions and land uses. Adherence to a set suite of methods selected by subjective criteria should be avoided, particularly when we do not yet have adequate data or agreed upon interpretive frameworks for many so-called “Tier 1” biological indicators used in soil health assessment. While pooling data collected by producer-groups is one of the most exciting new trends in soil health, standardizing methods to meet broad inventory goals could compromise indicator use for site or application-specific problem solving. Changes in our nation’s research landscape are shifting responsibility for soil stewardship from national and state government backed entities to public-private partnerships. As a result, it is critical to ensure that the data needed to assess soil health are generated by reproducible methods selected through a transparent process, and that data are readily available for public and private sector use. Appropriate methods for engagement need to be applied by public-private research partnerships as they establish and expand coordinated research enterprises that can deliver fact-based interpretation of soil quality indicators within the type of normative soil health framework conceived by USDA over 20 years ago. We look to existing examples as we consider how to put soil health information into the hands of practitioners in a manner that protects soils’ services

    Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management

    Get PDF
    The North Central Education and Research Activity Committee (NCERA-59) was formed in 1952 to address how soil organic matter formation and management practices affect soil structure and productivity. It is in this capacity that we comment on the science supporting soil quality and associated soil health assessment for agricultural lands with the goal of hastening progress in this important field. Even though the suite of soil quality indicators being applied by U.S. soil health efforts closely mirrors the “minimum data set” we developed and recommended in the mid-1990s, we question whether the methods or means for their selection and development are sufficient to meet current and emerging soil health challenges. The rush to enshrine a standard suite of dated measures may be incompatible with longer-term goals. Legitimate study of soil health considers soil change accrued over years to decades that influence on- and off-site function. Tailoring of methods to local conditions is needed to effectively apply and interpret indicators for different soil resource regions and land uses. Adherence to a set suite of methods selected by subjective criteria should be avoided, particularly when we do not yet have adequate data or agreed upon interpretive frameworks for many so-called “Tier 1” biological indicators used in soil health assessment. While pooling data collected by producer-groups is one of the most exciting new trends in soil health, standardizing methods to meet broad inventory goals could compromise indicator use for site or application-specific problem solving. Changes in our nation’s research landscape are shifting responsibility for soil stewardship from national and state government backed entities to public-private partnerships. As a result, it is critical to ensure that the data needed to assess soil health are generated by reproducible methods selected through a transparent process, and that data are readily available for public and private sector use. Appropriate methods for engagement need to be applied by public-private research partnerships as they establish and expand coordinated research enterprises that can deliver fact-based interpretation of soil quality indicators within the type of normative soil health framework conceived by USDA over 20 years ago. We look to existing examples as we consider how to put soil health information into the hands of practitioners in a manner that protects soils’ services

    High-speed MIMO communication and simultaneous energy harvesting using novel organic photovoltaics

    Get PDF
    A data rate of 363-Mb/s is achieved in a multiple-input-multiple-output experiment using 4 organic photovoltaics as receivers. The same system simultaneously extracted 10.9-mW. The resulting system model predicts 133-Gb/s using a 1000-cell organic solar panel

    Morphological, chemical, and electronic changes of the conjugated polymer PTB7 with thermal annealing

    Get PDF
    This work was supported by the Office of Naval Research NDSEG fellowship (V.S.) and the Department of Energy SCGSR Program (L.J.P.). Work was partially supported by the Department of the Navy, Office of Naval Research Award No. N00014-14-1-0580 (S.D.O., M.F.T.). L.K.J., I.R., and I.D.W.S. were supported by the Engineering and Physical Sciences Research Council (grants EP/L017008/1 and EP/L012294/1 ). I.D.W.S. also acknowledges support from a Royal Society Wolfson Research Merit Award. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.There is considerable interest in improving the performance of organic optoelectronic devices through processing techniques. Here, we study the effect of high-temperature annealing on the properties of the semiconducting polymer PTB7 and PTB7:fullerene blends, of interest as efficient organic photovoltaic (OPV) devices. Annealing to moderate temperature improves the PTB7 morphology and optoelectronic properties. High-temperature annealing also improves morphology but results in poorer optoelectronic properties. This is a result of side chain cleavage that creates by-products that act as trap states, increasing electronic disorder and decreasing mobility. We further observe changes to the PTB7 chemical structure after thermal cleavage that are similar to those following solar irradiation. This implies that side chain cleavage is an important mechanism in device photodegradation, which is a major ?burn-in? loss mechanism in OPV. These results lend insight into side chain cleavage as a method of improving optoelectronic properties and suggest strategies for improvement in device photostability.Publisher PDFPeer reviewe

    The effect of RaceRunning on cardiometabolic disease risk factors and functional mobility in young people with moderate-to-severe cerebral palsy: protocol for a feasibility study

    Get PDF
    Copyright © Author(s) (or their employer(s)) 2020. Introduction: There is consistent evidence that people with cerebral (CP) do not engage in the recommended physical activity guidelines for the general population from a young age. Participation in moderate-to-vigorous physical activity is particularly reduced in people with CP who have moderate-to-severe disability. RaceRunning is a growing disability sport that provides an opportunity for people with moderate-to-severe disability to participate in physical activity in the community. It allows those who are unable to walk independently, to propel themselves using a RaceRunning bike, which has a breastplate for support but no pedals. The aim of this study is to examine the feasibility and acceptability of RaceRunning for young people with moderate-to-severe CP and the feasibility of conducting a definitive study of the effect of RaceRunning on cardiometabolic disease risk factors and functional mobility. Methods and analysis: Twenty-five young people (age 5-21 yr) with CP or acquired brain injury affecting co-ordination will be included in this single arm intervention study. Participants will take part in one RaceRunning session each week for 24 weeks. Outcomes assessed at baseline, 12 and 24 weeks include body mass index, waist circumference, blood pressure, muscle strength, cardiorespiratory fitness, physical activity and sedentary behaviour, functional mobility, activity competence and psychosocial impact. Adverse events will be systematically recorded throughout the 24 weeks. Focus groups will be conducted with participants and/or parents to explore their views and experiences of taking part in RaceRunning. Ethics and dissemination: Approval has been granted by Queen Margaret University Research Ethics Committee (REC) and the South East of Scotland REC. Results will be disseminated through peer-reviewed journals and distributed to people with CP and their families through RaceRunning and Athletic Clubs, NHS trusts, and organisations for people with disabilities. Trial registration number: ClinicalTrials.gov Identifier: NCT04034342. Protocol version 1.0; pre-results.Action Medical Research and Chartered Society of Physiotherapy Charitable Trust.Joint award from Action Medical Research and Chartered Society of Physiotherapy Charitable Trust

    Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community

    Get PDF
    Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils’ respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes

    Status report on emerging photovoltaics

    Get PDF
    \ua9 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV
    corecore