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Abstract  

This work demonstrates a route to making mixed halide perovskite powders at room 

temperature by the anti-solvent assisted crystallization method. Although, mixed halide 

CH3NH3PbBr3-xClx perovskites have been prepared by different methods, however to best of our 

knowledge the anti-solvent assisted crystallization method is employed here for the first time to 

prepare mixed halide CH3NH3PbBr3-xClx perovskites powders. Solution processed methyl 

ammonium lead tribromide CH3NH3PbBr3 (x=0) and different amounts of chloride (Cl) 

containing mixed halide perovskites (CH3NH3PbBr3-xClx) were prepared for compositions of x = 

0.5, 1, 1.25, 1.75. It reveals that bulk CH3NH3PbBr3-xClx samples are highly crystalline and 

exists in pure single cubic phase with an increased tolerance factor as compared to pure 

CH3NH3PbBr3. The CH3NH3PbBr3 perovskite has space-group Pm-3m and a cell parameter of 

5.930 Å (volume = 206 Å). The synthesis route adopted here gives access to hybrid perovskites 

powders with high Cl content and hence enables the band gap to be precisely tuned over a range 

from 2.26 eV to 2.49 eV. The powder samples display the subtle shifts in the emission spectra 

and the photoluminescence kinetics exhibits a decrease in average lifetime by increasing the Cl 

contents due to the presence of trap states in the structures that encourage non-radiative 

recombination of charge-carrier. Conventionally, the CH3NH3PbBr3 based inverted solar cell 

architecture is prepared via mixing of the CH3NH3Br and PbBr2 precursors. In contrast herein, 

the precursor solutions are directly prepared from the CH3NH3PbBr3 powder and the active layer 

of the inverted perovskite solar cells are then spin coated using this solution. The high Voc value 

of the fabricated solar cells potentially makes it a promising candidate for tandem photovoltaic, 

photocatalytic water-splitting and semi-transparent photovoltaic applications. 
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1. Introduction 

Organometal halide perovskites have been widely explored as promising materials for 

different electro-optical devices such as light emitting diodes, solar light harvesting, optical 

sensors and lasers [1]. These materials have great interest because of their low manufacturing 

cost, fast charge generation, high absorption coefficient, easy crystallization, low recombination, 

long diffusion length, high charge mobility, high power conversion efficiency and tunability of 

optical properties [2]. High photoluminescence (PL) quantum yield, intense narrow-band PL and 

broad color-tunability in visible region is exhibited by different perovskites making them a 

suitable candidate for applications in lasers, light-emitting diodes (LEDs), photochemical 
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activities, electrochemical water splitting, as well as  solar cells and  tandem solar cells  [3-8]. 

They have common formula of ABX3, where A is an organic or inorganic monovalent cation 

(CH3NH3
+, HC(NH2)2

+, CH3CH2NH3
+, Cs+, Rb+ etc.), B is an octahedrally coordinated metal 

cation (Pb2+, Ge2+, Sn2+, Bi3+ etc.) and X is the halogen anion (Cl-, Br- or I-) [9, 10]. In 2009 

Miyasaka and co-workers utilized the CH3NH3PbX3 (X= I, Br) perovskites as light sensitizers for 

the first time in the photovoltaic (PV) devices with ∼4% efficiency and opened up the field of 

perovskite based solar cells as an emerging technology [11, 12]. Later on, the certified power 

conversion efficiency (PCE) increased remarkably and very recently, PCE above 25% has been 

achieved for perovskite solar cells [13-15]. 

The performance of perovskite materials in photovoltaic devices is critically influenced 

by the adopted fabrication method. Differences in the optoelectronic properties, morphology, 

charge carrier dynamics and crystallization can occur due to different processing methods [16]. 

Solvent engineering, compositional engineering, in-situ and vapour deposition techniques have 

been utilized for high quality perovskite materials [17-20]. Engineering of perovskite thin films 

may be accomplished by single step spin coating, double step consecutive deposition, vapor 

assisted deposition and anti-solvent assisted deposition processes [21-26]. The underlying 

influential factor that determines the working of the photovoltaic devices is the crystallization 

process of perovskite during solution deposition [27]. The anti-solvent assisted crystallization 

(ASAC) is a crucial choice for attaining precise solidification of perovskite materials. The 

solubility of a solute in solution is subsequently reduced by the addition of a secondary solvent 

(anti-solvent) and ultimately leads to the precipitation. Homogenous, high quality films and 

perovskite powders can also be obtained using this method by modulating the initial solution 

concentration, composition and the rate of addition of secondary solvent [28, 29].  
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The main purpose of the current study is to synthesize mixed halide hybrid perovskites by 

using the anti-solvent assisted crystallization method (ASAC). The synthesis of mixed halide 

CH3NH3PbBr3-xClx perovskites have been reported by different methods [30, 31], however to the 

best of our knowledge the mixed halide CH3NH3PbBr3-xClx perovskites powders are prepared for 

the first time by the anti-solvent assisted crystallization method. By applying this method, 

initially the bulk CH3NH3PbBr3 (x=0) and then mixed halide CH3NH3PbBr3-xClx (x = 0.5, 1, 

1.25, 1.75) perovskite solid-state powders were prepared from their respective solution 

precursors. An increase of chloride content in the synthesized perovskites causes a blue-shift in 

the absorption and fluorescence spectra but the crystal structures of materials does not alter, 

suggesting that anti-solvent crystallization strategy is promising approach for the synthesis of 

perovskites materials with well-defined crystal structure with an enhanced tolerance factor. The 

band gap tuning in the UV-Vis region was attained by varying the Br to Cl weight ratios in the 

precursor solution. The prepared CH3NH3PbBr3 powder was then subsequently used for the 

preparation of CH3NH3PbBr3 thin films and fabrication of solar cell devices. Conventionally, 

CH3NH3PbBr3 based solar cells have been prepared via the mixing of CH3NH3Br and PbBr2 

precursors. In contrast, in our present study, we prepare the precursor solutions directly from the 

CH3NH3PbBr3 powder and the active layer of the inverted perovskite solar cells were then spin 

coated using this solution. The high Voc from the fabricated solar cells and the band gap tuning in 

mixed halide organometal perovskites suggest multitudes of applications in optoelectronic 

devices.  
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2. Material and methods 

2.1. Materials 

Lead (II) bromide (98%, BDH), lead (II) chloride (98%, Sigma Aldrich), methylamine (40% 

wt. in H2O, Merck), hydrobromic acid (48% in H2O, Sigma Aldrich), absolute ethanol (99.8%), 

anhydrous diethyl ether (99.5%, Riedel-de Haen), toluene (99.9%, Sigma Aldrich), anhydrous N, 

N-dimethyl formamide (Sigma Aldrich, DMF-99.9%), di-methyl sulfoxide (Sigma Aldrich, 

DMSO-99.9%), gamma-butyrolactone (Sigma Aldrich, GBL-99%) and chlorobenzene 

anhydrous (Sigma-Aldrich, 99.8 %). All chemicals were utilized as received without any further 

purification.  

2.2. Methyl ammonium bromide (CH3NH3Br) synthesis 

Methyl ammonium bromide (CH3NH3Br) was synthesized by neutralization of pre-

cooled aqueous methylamine solution (CH3NH2 1M, 40% in H2O) by drop wise adding of 

hydrobromic acid (HBr 1M, 48% in H2O). For complete neutralization, the mixture was 

constantly agitated at 0 °C for three hours in the ice bath. The white crystalline powder of 

CH3NH3Br was obtained by evaporating the solvent using rotary evaporation for one hour at 80 

°C. The crystalline powder was re-dissolved in absolute ethanol and recrystallized with 

anhydrous diethyl ether. To obtain pure white crystalline CH3NH3Br, this process was repeated 

three times and undesired impurities were removed off.  Afterwards CH3NH3Br crystals were 

also washed with diethyl ether. The crystalline white powder was collected by filtration and 

dried in vacuum oven for 24 hours at 80 °C. The obtained solid white colored CH3NH3Br 

product was used for the synthesis of CH3NH3PbBr3 and other perovskite materials. 
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2.3. Methyl ammonium lead tribromide perovskite (CH3NH3PbBr3) synthesis 

Perovskite sensitizer solution of CH3NH3PbBr3 was prepared by mixing stoichiometric 

amount of lead bromide (PbBr2 1.84 g, 0.5 M) and the synthesized methyl ammonium bromide 

(CH3NH3Br, 0.56 g, 0.5 M) powder in the high boiling point DMF solvent. The resultant solution 

was continuously stirred at 60 °C for 24 hours. The CH3NH3PbBr3 powder was prepared through 

precipitation by using the anti-solvent toluene at room temperature. The orange colored 

CH3NH3PbBr3 powder was obtained by rapidly injecting 1 mL of CH3NH3PbBr3 solution in 5 

mL of stirring toluene. After centrifugation at 4000 rpm for 120 seconds the supernatant was 

discarded and residue of CH3NH3PbBr3 was oven dried for 24 hours at 80 °C. 

2.4. Mixed halide perovskites (CH3NH3PbBr3-xClx) synthesis 

Chloride containing mixed halide CH3NH3PbBr3-xClx perovskite solutions (0.5 M) were 

prepared in 10 mL DMF. The x values 0.5, 1.0, 1.25 and 1.75 corresponds to the weight ratio 

compositions: CH3NH3PbBr2.5Cl0.5, CH3NH3PbBr2Cl1, CH3NH3PbBr1.75Cl1.25 and 

CH3NH3PbBr1.25Cl1.75, respectively. For x=0.5 CH3NH3PbBr2.5Cl0.5 perovskite 0.6 g CH3NH3Br, 

1.54 g PbBr2 and 0.31 g PbCl2 were added and stirred continuously in DMF for 24 hours at 60 

°C. Similarly, other compositions were also prepared by adding 0.6 g CH3NH3Br, 1.23 g PbBr2 

and 0.62 g PbCl2 (x=1), 0.6 g CH3NH3Br, 1.1 g PbBr2 and 0.77 g PbCl2 (x=1.25) and 0.6 g 

CH3NH3Br, 0.77 g PbBr2 and 1.1 g PbCl2 (x=1.75) in 10 mL DMF. The solidification of mixed 

halide powders was achieved by using toluene as anti-solvent. 1 mL of mixed halide solution 

was added in 5 mL of stirred toluene in separate vials to obtain different mixed halide 

precipitates. After centrifugation at 4000 rpm for 120 seconds, the supernatants were discarded 

and residues were dried in vacuum oven for 24 hours at 80 °C, which gave the desired products. 
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2.5. Characterization techniques 

The surface morphology of 3-D CH3NH3PbBr3 and CH3NH3PbBr3-xClx perovskites was 

studied by field emission scanning electron microscopy (FESEM, MIRA 3 XMU coupled energy 

dispersive X-ray, EDX). A PerkinElmer Lambda 35 UV-Vis spectrometer was used at room 

temperature to measure the reflectance spectrum of the powder samples. Flau Time 300 (FT-300) 

steady-state and lifetime spectrometer, Pico Quant GmbH Germany, was used to study the 

fluorescence spectra and kinetics. The samples films were excited at 306 nm with a pulsed PLS-

300 LED excitation source and the photoluminescence (PL) spectra and kinetics of the 

synthesized perovskite materials were collected under ambient conditions as described 

previously [32, 33]. Powder X-ray diffraction (XRD) analysis was performed with a PANalytical 

X'Pert Pro diffractometer by using Cu Kα1 radiation in the 2θ range of 10-70° at room 

temperature. A METTLER TOLEDO TGA-1 thermogravimetric analyzer was used to 

investigate thermal stability of CH3NH3PbBr3 sample (28.04 mg) in Al2O3 crucible, heated from 

room temperature to 1000 oC under nitrogen atmosphere. The heating rate and gas flow rate were 

10 oC/minute and 50 mL/minute, respectively. TGA/HT DSC HSS2 sensor was used for 

differential scanning calorimetry (DSC) analysis at the ramping rate of 10 oC/minute in nitrogen 

environment.  

2.6. Solar cell device fabrication 

As reported earlier, the use of mixed solvents in the device fabrication of perovskite solar 

cells has increased the compactness of the films. Mixed solvents help to achieve higher surface 

coverage with the formation of smooth and uniform films of perovskites when compared to  

individual solvents [34, 35]. In this regard, a mixed solvent consisting of GBL and DMSO in the 

7:3 v/v % ratio was used to prepare CH3NH3PbBr3 active layer solution in our fabricated solar 
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cell devices. The concentration of the prepared solution is 200 mg /mL. The precursor solution 

was stirred overnight (~ 17 hours) at 60 °C inside N2 filled glove box.  Indium tin oxide (ITO) 

coated glass substrates (2 × 2 cm2) were employed to fabricate the perovskite solar cells. 

Substrates were cleaned before the deposition of the different functional layers. Detergent, 

deionized water, acetone and 2-propanol were consecutively engaged in ultra-sonication bath for 

the cleaning of ITO-coated glass substrates, followed by drying in N2 stream. To remove organic 

residues from the substrate surface and to improve the wettability, the substrates were plasma-

cleaned for a duration of 3 minutes. Thin films of PEDOT:PSS (Clevios- VP AI 4083) aqueous 

solution were prepared on the ITO glass substrates by spin coating for 60 seconds at 4000 rpm 

and dried on a hot plate for 20 minutes at 130 °C. These films were then transferred into a N2 

filled glove box.  The perovskite active solution was filtered through a 0.2 μm PTFE filter, 

before spin coating onto the ITO/PEDOT:PSS substrate. The two-step spin coating condition 

was 1000 rpm for 10 seconds and 4000 rpm for 40 seconds. After 20 seconds of the second step, 

300 μL of toluene was added on to the spinning substrate. Then the substrates were annealed for 

10 minutes at 100 °C. The PC60BM (American Dye Sources) electron transporting layer was 

prepared from a 10 mg/mL chlorobenzene solution (filtered with a 0.2 µm PTFE pores) and spin 

coated at 1000 rpm for 60 seconds. The LiF (1 nm)/Ag (100 nm) electrode was deposited by 

thermal evaporator at a pressure of 10-6 mbar.  The active area of the solar cell device was 3 mm 

× 2 mm. The final device architecture was 

Glass/ITO/PEDOT:PSS/CH3NH3PbBr3/PCBM/LiF/Ag. Afterwards, the solar cells were 

encapsulated by UV-epoxy and measured under 1 sun illumination by Sciencetech solar 

simulator. The illumination intensity was verified by using a calibrated mono silicon detector and 

a KG-5 filter. The external quantum efficiency (EQE) measurements were performed at zero bias 
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by illuminating the device with monochromatic light supplied from a Xenon arc lamp in 

combination with a Bentham TMc300 monochromator. 

3. Results and discussion 

The modified Goldschmidt’s tolerance factor (teffective) is employed to predict the stable 

ABX3 cubic crystal structure of perovskite materials. The effective anionic radius (r anion), 

effective tolerance factor (teffective) and octahedral factor (μ) is estimated by following equations: 

(𝑟 𝑎𝑛𝑖𝑜𝑛)(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = 𝑥𝐶𝑙−1 + (1 − 𝑥)𝐵𝑟−1   (1) 

𝑡(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) =
[(𝑟 𝐶𝐻3𝑁𝐻3+1)+(𝑟 𝑎𝑛𝑖𝑜𝑛(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒))]

√2 [(𝑟𝑃𝑏+2)+(𝑟 𝑎𝑛𝑖𝑜𝑛(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒))]
     (2) 

𝑢 =  
𝑟 𝑃𝑏+2 

𝑟 𝑎𝑛𝑖𝑜𝑛(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)
          (3) 

The ionic radii of CH3NH3
+, Pb2+, Br- and Cl- are 2.17 Å, 1.19 Å, 1.96 Å and 1.81 Å, 

respectively [36]. Ideal cubic perovskite configuration occurs when the (teffective) value for 

perovskite is in the range of 0.80 - 1.0 and octahedral factor (μ) should be over 0.40  [37, 38]. 

Below 0.8 or above 1.0, orthorhombic and hexagonal configurations tend to form by perovskites. 

If the value of tolerance factor is 1 or smaller than 0.7 then non-perovskite structures are 

predominantly observed [39]. The calculated results for tuning the tolerance factor by mixed 

halide CH3NH3PbBr3-xClx (x = 0.5, 1, 1.25, 1.75) perovskites are shown in Table 1. The tolerance 

factor of mixed halide perovskites (0.933-0.947) is enhanced as compare to pure CH3NH3PbBr3 

(0.927) which suggests that with the substitution of more electronegative chloride contents 

(small sized) in place of less electronegative bromide (large sized), the cubic structural 

configuration in mixed halide perovskites gains more stability and moves toward more ideal 

cubic structure formation.  

 



11 

 

Table 1. The effective anionic radius (r anion), effective tolerance factor (teffective) and octahedral 

factor (μ) for CH3NH3PbBr3 (x=0), CH3NH3PbBr2.5Cl0.5 (x=0.5), CH3NH3PbBr2Cl1 (x=1), 

CH3NH3PbBr1.75Cl1.25 (x=1.25) and CH3NH3PbBr1.25Cl1.75 (x=1.75) perovskites. 

 

Compound X values (r anion)effective 

(Å) 

Effective tolerance 

factor (teffective) 

Octahedral 

factor (μ) 

CH3NH3PbBr3 0 1.960 0.927 0.607 

CH3NH3PbBr2.5Cl0.5 0.5 1.885 0.933 0.631 

CH3NH3PbBr2Cl1 1 1.810 0.938 0.658 

CH3NH3PbBr1.75Cl1.25 1.25 1.773 0.941 0.671 

CH3NH3PbBr1.25Cl1.75 1.75 1.698 0.947 0.701 

 

In order to understand the phase purity and crystal structures of CH3NH3PbBr3-xClx 

perovskites, powder XRD analysis was conducted. Figure 1 (a) displays the XRD pattern of 

synthesized CH3NH3PbBr3 perovskite material (black trace). The sharp peaks in XRD patterns of 

CH3NH3PbBr3 demonstrate that the sample is highly crystalline, and also no impurity peak is 

observed which confirms its phase purity. The diffraction data can be indexed to space-group 

Pm-3m and a cell parameter of 5.930 Å with volume = 206 Å, which is in good agreement with 

the published structural model of CH3NH3PbBr3 [40-42]. All peaks in all XRD patterns of 

CH3NH3PbBr2.5Cl0.5 (x=0.5), CH3NH3PbBr2Cl1 (x=1), CH3NH3PbBr1.75Cl1.25 (x=1.25) and 

CH3NH3PbBr1.25Cl1.75 (x=1.75) perovskite powders can be accounted for in space group Pm-3m, 
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with a cubic unit cell parameter ranging from ~5.93 Å to 5.84 Å, indicating that all samples are 

pure. No impurity peaks are observed in any of the diffraction patterns. Figure 1 (b) represents 

the unit cell parameters of mixed halide perovskites whose value decreased with the increase in 

the amount of chloride component in the perovskite structures due to the substitution of smaller 

chloride atom instead of larger bromide atom in perovskites [43]. The Miller indices for all peaks 

in the diffraction patterns of the powdered samples are given in the Table S1. Based on the EDX 

and XRD results, it is deduced that CH3NH3PbBr3-xClx perovskite crystals are present in phase 

pure cubic materials. Similarly, the thin film diffraction pattern of CH3NH3PbBr3 used in solar 

cell device preparation can be assigned to a phase pure sample. All peaks can be indexed to a 

cubic unit cell with a = 5.9274(12) Å. The diffraction patterns of thin film correspond to the 

(100), (200), (300) and (400) miller indices, designating that basic perovskite cubic structure 

remain unchanged Figure S1.  
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Figure 1. (a) XRD patterns of mixed halide perovskite powder samples, (b) calculated unit cell 

parameters of CH3NH3PbBr3 (x=0), CH3NH3PbBr2.5Cl0.5 (x=0.5), CH3NH3PbBr2Cl1 (x=1), 

CH3NH3PbBr1.75Cl1.25 (x=1.25) and CH3NH3PbBr1.25Cl1.75 (x=1.75) perovskites. 

 

The morphology and chemical composition of mixed halide perovskites were analyzed 

by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, 

respectively. The SEM micrograph of synthesized CH3NH3PbBr3 perovskite powder (x=0) is 

shown in Figure 2 (a), which demonstrates that the CH3NH3PbBr3 is present in the form of 

cuboidal microcrystals. The typical size of cubic crystal particles was ≈ 1 µm. The 

CH3NH3PbBr3 perovskites microcrystals of size 1-100 µm were also prepared by employing 

vapor-assisted solution process at room temperature [44]. The SEM micrographs of mixed halide 

perovskites are displayed in Figure 2 (b-e), which reveals that the synthesized materials exist in 

the form of cuboidal microcrystals of different sizes. The slight variation in morphology of Cl 

substituted perovskites may be related to the small size of Cl ions (1.81 Å) as compare to larger 

Br ions (1.96 Å). With the substitution of Cl ions for Br ones, some sort of strain is produced on 

the anion site in the lattice structure, which probably leads to a little change in perovskite lattice 

with the production of different defects in structure. The full width at half maximum (FWHM) of 

002 XRD peak of mixed halide perovskite is increased from 0.147-0.22° (Table S2) which 

would be expected due to smaller crystallite size and strain effects due to Cl and Br occupying 

the same site in the crystal structure in  these mixed halide perovskite materials. Different 

strategies have been employed and their corresponding effects on the crystallinity and surface 

morphology of perovskite materials have been discussed in detail in literature [45-47]. The 

atomic composition of mixed halide perovskites (CH3NH3Br3-xClx) are shown in Table 2 and 
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their corresponding EDX spectra as displayed in Figure S2. It is demonstrated that 3:1 atomic % 

of Br/Pb was present in CH3NH3PbBr3 (x=0). As the amount of chloride component is increased, 

the bromide concentration decreased in the synthesized mixed halide perovskites. The EDX 

spectra display no impurity peaks and the atomic % ratios of Pb, Br and Cl are in good 

agreement with the expected ratios of these components in mixed halide perovskite, which 

provide evidence for the successful synthesis of different perovskite materials by the anti-solvent 

assisted crystallization method. 
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Figure 2. SEM micrographs of (a) CH3NH3PbBr3 powder (x=0), (b) CH3NH3PbBr2.5Cl0.5 

(x=0.5), (c) CH3NH3PbBr2Cl1 (x=1), (d) CH3NH3PbBr1.75Cl1.25 (x=1.25) and (e) 

CH3NH3PbBr1.25Cl1.75 (x=1.75) perovskites.  

(a) (b)

(e)

(d)(c)
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Table 2. Chemical constituents present in mixed halide perovskites (CH3NH3PbBr3-xClx) 

assessed from EDX analysis. 

 

The UV-Vis reflectance spectrum of powder CH3NH3PbBr3 (x=0) and the corresponding 

mixed halides are shown in Figure 3 (a). In the case of CH3NH3PbBr3 powder, there is a sudden 

decrease in reflectance at 580 nm and this sharp decrease in the reflectance provides an evidence 

of direct band gap material. Figure 3 (a) shows that, the UV-Vis reflectance spectra of 

CH3NH3PbBr3-xClx (x=0, 0.5, 1, 1.25, 1.75) powders are blue-shifted in comparison to 

CH3NH3PbBr3 with an increase in the amount of chloride component. The optical band gaps (Eg) 

of CH3NH3PbBr3-xClx (x=0, 0.5, 1, 1.25, 1.75) powders are estimated by the Kubelka−Munk 

equation [48] (eq. 4) and are found to be in the visible region of the spectrum.  

Compound 

Weight % Atomic % 

Total Element Element 

Cl K Br L Pb M Cl K Br L Pb M 

CH3NH3PbBr3 (X=0) - 55.0 45.0 - 74.7 25.3 100 

CH3NH3PbBr2.5Cl0.5 (X=0.5) 3.7 45.6 50.7 11.4 62.0 26.6 100 

CH3NH3PbBr2Cl1 (X=1) 10.2 41.5 48.3 27.6 50.0 22.4 100 

CH3NH3PbBr1.75Cl1.25 (X=1.25) 13.1 37.2 49.7 34.4 43.3 22.3 100 

CH3NH3PbBr1.25Cl1.75 (X=1.75) 15.5 28.5 56.0 41.0 33.6 25.4 100 
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             𝐹(𝑅) = (1 − 𝑅)2/2𝑅  [𝐹(𝑅)ℎ𝜈]2 = 𝐴(ℎ𝜈 −  𝐸𝑔)  (4) 

The Kubelka−Munk function F(R) is associated with the absorption coefficient (α) of the 

material and R represent the absolute reflectance, A is a constant, hν is photon energy and Eg 

represents the band gap of the material. By extrapolating the linear part of [F(R) hν]2 vs photon 

energy (eV) to zero of y-axis we estimated the band gaps of these materials as displayed by 

Figure 3 (b). The optical band gaps of mixed halide perovskites CH3NH3PbBr3-xClx were varied 

from 2.26 to 2.49 eV by increasing the incorporation of chloride content from x=0 to x= 1.75. 

This unremitting blue shift in absorption and higher band gaps in mixed halide perovskites is 

attributed to the change in the interaction of orbitals from bromide (Br-4p) to chloride (Cl-5p) 

participating in bond formation with Pb ions (6p). The estimated band gap values match with the 

previously reported band gap of mixed bromide/chloride, CH3NH3PbBr3-xClx system with 

comparable x-values [49]. 



19 

 

 

 

2.0 2.2 2.4 2.6
0

25

50

75

100

 x=0

 x=0.5

 x=1

 x=1.25

 x=1.75

(F
(R

)h


)2

Energy (eV)

(b)

400 600 800 1000

20

40

60

 x=0

 x=0.5

 x=1

 x=1.25

 x=1.75

%
 R

e
fl

e
c
ta

n
c
e

Wavelength (nm)

(a)



20 

 

Figure 3. (a) UV–Vis reflectance spectra, (b) optical band gaps estimation of CH3NH3PbBr3 

(x=0), CH3NH3PbBr2.5Cl0.5 (x=0.5), CH3NH3PbBr2Cl1 (x=1), CH3NH3PbBr1.75Cl1.25 (x=1.25) and 

CH3NH3PbBr1.25Cl1.75 (x=1.75) perovskite powders. 

 

A thick paste of CH3NH3PbBr3 (x=0) was prepared in methanol and deposited on a clean 

glass slide to measure its steady-state photoluminescence (SSPL) spectrum. It exhibited a broad 

emission peak at 550 nm (2.25 eV) as shown in Figure 4 (a). The emission peak can be assigned 

to the direct recombination of photo-generated charge-carrier. The small hump around 435 nm 

may be due to light scattering by the solvent molecules or due to the existence of PbBr6 whose 

presence is so small, that it does not show any feature in XRD analysis owing to beyond the 

detection limit of the XRD. The SSPL spectra of CH3NH3PbBr3-xClx (x=0, 0.5, 1, 1.25, 1.75) 

perovskites, Figure 4 (a), display a blue-shift of 0.11 eV from 550 nm (2.25 eV) to 525 nm (2.36 

eV) from the parent CH3NH3PbBr3 (x=0) PL spectrum. This blue-shift is attributed to the 

accommodation of chloride components in these perovskite materials that lead to increase in the 

band gap. 

Time-resolved photoluminescence measurements (TRPL) were conducted to understand 

the photo-injected charge-carrier dynamics of the prepared samples. The PL decay kinetics of 

CH3NH3PbBr3 (x=0) are displayed in Figure 4 (b) and the measured PL kinetics are best fitted 

by a combination of two unimolecular recombination kinetics models (bi exponential decay 

function) [50-52] as displayed by equation (5). 

)/(-t expA + )/exp(-tA = A(t) 2211             (5) 

Here A1, A2, are the associated coefficients (pre-exponential factors) and τ1 and τ2 are the time 

constants of each component, respectively. The extracted parameters from the best fit are given 
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in Table S3. The measured PL kinetics of CH3NH3PbBr3 (x=0) at 547 nm suggests the PL 

mainly decays by trap assisted recombination originating from two distinct channels, represented 

by two time constants, τ1 = 3.3 ns (69 %) and τ2 =15.4 ns (31 %). As suggested by the pre-

exponential factor A1, the 69 % of PL is decayed in 3.3 ns, suggesting the photo-generated 

charge-carrier are readily trapped in the trap states. The long lifetime component, τ2 =15.4 ns 

suggests almost 31% of photo-injected charge-carrier (electrons and holes) recombine directly 

from conduction band to valence band [53]. It has also has been reported the PL kinetics of 

CsPbBr3 single crystal exhibits time constants of  τ1 = 23 ns and τ2 =233 ns that are related to the 

surface and bulk carrier recombination [54]. As previously discussed by FWHM values that with 

the chloride substitution, more trap states are introduced in the structures, which are expected to 

lead toward the shortening of PL lifetime in mixed halide perovskite materials. However, this 

shortening of lifetime is not visible in Figure 4 (c) due to the limited instrument response (0.5 

ns) of our TCSPC setup. The attempts to fit the PL data with a bi-molecular recombination 

model was also made but none of the data was adequately fitted with this model. The best fits 

obtained by combination of two unimolecular decay kinetics model suggesting majority of 

charge-carrier recombine non-radiatively through the trap states. The amplitude weighted τaverage 

of charge-carrier is estimated by equation (6) and the values are presented in Table S3. 

𝜏𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐴1𝜏1+𝐴2𝜏2

𝐴1+𝐴2
     (6) 

The calculated average radiative lifetime (τaverage) of CH3NH3PbBr3 (x=0) is 7.07 ns and with 

chloride substitution its value is decreased. The τaverage values of CH3NH3PbBr2.5Cl0.5 (x=0.5), 

CH3NH3PbBr2Cl1 (x=1), CH3NH3PbBr1.75Cl1.25 (x=1.25) and CH3NH3PbBr1.25Cl1.75 (x=1.75) are 

4.80, 5.42, 5.82 and 5.98 ns, respectively. This type of faster PL decay behavior is also observed 

in CsPb(Br/Cl)3 perovskite nanocrystals, in which τaverage decreased with the increase in higher 



22 

 

band gap causing Cl component in the structure [55]. The possible fates of photo-induced 

charge-carrier recombination dynamics are explained by a simple pictorial diagram presented in 

Figure 4 (d).  

 

 

 

Figure 4. (a) SSPL spectra  of CH3NH3PbBr3-xClx powders (λexc ~ 306 nm pulse laser), (b) PL 

decay kinetics (black trace), model fit (red trace) and IRF (olive trace) of CH3NH3PbBr3 (x=0), 

(c) PL decay kinetics trace of CH3NH3PbBr3 (x=0), CH3NH3PbBr2.5Cl0.5 (x=0.5, 
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CH3NH3PbBr2Cl1 (x=1), CH3NH3PbBr1.75Cl1.25 (x=1.25) and  CH3NH3PbBr1.25Cl1.75 (x=1.75) 

perovskites and (d) recombination fates of photo-generated charge-carriers. 

 

The thermal stability of CH3NH3PbBr3 (x=0) was evaluated by thermo-gravimetric 

analysis (TGA). As indicated in Figure S3 (a) the synthesized CH3NH3PbBr3 perovskite was 

thermally stable up to 254 °C. The sample decomposed in two major steps upon heating up to 

1000 °C. Table S4 showed the peak temperatures (Tp) of TG / DTG thermograms. The 

decomposition above 254 °C was attributed to the removal of CH3NH3Br, which lead to the 

weight loss of 23 % at 430 °C. It may be related to the liberation of CH3NH3Br or its 

decomposition into methylamine and HBr. As the temperature increased from 450 °C to 642 °C, 

further weight loss of 70 % could be ascribed to the thermal decomposition of the inorganic part 

PbBr2 and melting of the perovskite material. This type of thermal behavior is in accordance with 

the findings of Biwu et al., [56]. 

Differential scanning calorimetry (DSC) analysis showed a distinct feature in DSC curve 

of the synthesized methyl ammonium lead bromide (CH3NH3PbBr3) perovskite at 375 °C, which 

represented the melting temperature of lead bromide (PbBr2), as shown in Figure S3 (b). 

Complete decomposition of perovskite material was observed with further increase in 

temperature. Similar thermal behavior has been observed for other perovskite materials used in 

solar cell devices [57].          

After the structural and optical characterization of the synthesized CH3NH3PbBr3 (x=0) 

perovskite powder, it was investigated for photovoltaic application. The CH3NH3PbBr3 thin films 

were prepared as described in the experimental section and their UV-Vis absorption spectrum of 

the prepared thin film is displayed in Figure 5 (a) suggesting the first excitonic absorption at 
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⁓550 nm. The J-V characteristics of the prepared solar cell device under 1 Sun illumination are 

presented in Figure 5 (b) and the solar cell performance parameters are listed in Table 3. The 

maximum power conversion efficiency obtained is 1.4 %. As displayed in Table 3, the main 

factor that limits the photovoltaic performance is the short circuit current density (Jsc). This can 

be attributed to the wide band gap of the CH3NH3PbBr3 thin film and the less absorption of the 

solar spectrum in visible and near IR region. This is further revealed in the external quantum 

efficiency (EQE) spectrum as shown in Figure 5 (c). The inverted device architecture used for 

the solar cell fabrication is shown in Figure 5 (d). The Voc of the solar cells is high and is ~1.2 V. 

The photovoltaic performance for CH3NH3PbBr3 is poor than the previously reported PCEs of ~ 

2-5% [58-60]. This could be related to the starting precursor being different, e.g., CH3NH3PbBr3 

vs (CH3NH3Br + PbBr2) and not-fully optimized solar cell device parameters (such as active 

layer thickness, use of efficient counter electrodes, solvent and interface engineering) [61]. Table 

S5 also represent power conversion efficiencies of CH3NH3PbBr3 perovskites in comparison to 

CH3NH3PbBr3 based solar cells prepared in this work. The efficiency of perovskites could be 

improved by manipulating different practices such as interface engineering by using different 

organic material or small molecular additives which absorb light in NIR region [62-66]. The 

CH3NH3PbBr3 thin film was selected for photovoltaic applications since the chloride based 

mixed halides have higher band gap compared to CH3NH3PbBr3 as shown in Figure 3 (b). As 

reported earlier, with the controlled tuning of band gaps to higher values these mixed halide 

perovskite materials could be utilized to prepare semi-transparent or transparent UV light 

harvesting photovoltaic devices [67]. Even though the spectral overlap of the absorption 

spectrum of CH3NH3PbBr3 with the visible solar spectral region is poor, resulting in low power 

conversion efficiency, their semi-transparent nature and better overlap with the indoor light 
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spectral region such as white LEDs, makes it a promising candidate for tandem solar cells, 

indoor solar cells and semi-transparent photovoltaic devices.  

 

 

Figure 5. (a) UV-Vis absorption spectrum of the CH3NH3PbBr3 thin film, inset showed the 

orange colored photograph of CH3NH3PbBr3 powder, (b) J-V characteristics (forward scan-black 

line and reverse scan-red line), (c) EQE spectrum of the fabricated CH3NH3PbBr3 solar cell and 

(d) inverted device architecture used for the fabrication of CH3NH3PbBr3 solar cells. 
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Table 3. Inverted solar cell performance parameters for CH3NH3PbBr3
 based solar cells. The 

solar cell performance parameters are averaged over 7 devices and ± values show the standard 

deviation. (FW-forward scan and RW–reverse scan).  

 

 

4. Conclusions 

This study clearly demonstrated that the anti-solvent crystallization method adopted here 

was an easy approach to prepare the solid powder of mixed halide perovskites. The powder XRD 

analysis revealed that the CH3NH3PbBr3-xClx samples were highly crystalline and had cubic 

symmetry, and exhibited an enhanced tolerance factor. FESEM showed that the samples were in 

the form of bulk cubes. The UV-Vis reflectance and PL spectra of mixed perovskites were blue-

shifted by increasing the chloride content in CH3NH3PbBr3-xClx perovskites. By changing the 

chloride contents, the band gap of the mixed halide perovskites was varied from 2.26 eV to 2.49 

eV. The PL kinetics measurements demonstrated that the major part of the photo-injected 

charge-carrier recombine non-radiatively by recombination through the trap states with average 

radiative lifetimes of 7.07 ns (for x = 0) to 4.80 ns (for x = 0.5). Due to the limited instrument 

response function the fast trapping of charge-carrier was not convincingly visible in our 

measurements. The thermal studies demonstrated that CH3NH3PbBr3 was stable at room 

Scan Jsc 

(mA/cm2) 

Voc (V) FF (%) Rsh 

(ohm cm2) 

Rs 

(ohm cm2) 

PCE (%) 

average 

PCE (%) 

best 

FW 1.70±0.35 1.17±0.03 53.8±3.6 3342±1314 2.74±0.53 1.07±0.18 1.17 

RW 1.57±0.48 1.18±0.03 58.4±6.3 6034±2736 4.73±2.15 1.08±0.36 1.41 
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temperature and started to degrade at 250 ̊C. The 2.26 eV direct optical band gap of 

CH3NH3PbBr3 and high Voc (1.2 eV) makes it a highly suitable candidate for low cost tandem 

solar cells, indoor solar cells and semi-transparent photovoltaic devices. 
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