237 research outputs found

    Dexamethasone inhibits IL-9 production by human T cells

    Get PDF
    BACKGROUND: Interleukin 9 (IL-9) is produced by activated CD4+ T cells. Its effects include stimulation of mucus production, enhanced mast cell proliferation, enhanced eosinophil function, and IgE production. These effects are consistent with a role in allergic diseases. Glucocorticoids have potent anti-inflammatory effects, including suppression of cytokine synthesis, and are widely used in the treatment of allergic conditions. METHODS: We examined the effect of the glucocorticoid dexamethasone (Dex) on IL-9 mRNA expression and protein secretion with real-time RT-PCR and ELISA. Peripheral blood mononuclear cells (PBMC) were prepared from human volunteers and activated with OKT3. CD4+ T cells were purified from PBMC and activated with OKT3 plus PMA. RESULTS: IL-9 mRNA abundance and protein secretion were both markedly reduced following treatment of activated PBMC with Dex. mRNA levels were reduced to 0.7% of control values and protein secretion was reduced to 2.8% of controls. In CD4+ T cells, Dex reduced protein secretion to a similar extent. The IC(50 )value of Dex on mRNA expression was 4 nM. CONCLUSION: These results indicate that IL-9 production is very markedly inhibited by Dex. The findings raise the possibility that the beneficial effects of glucocorticoids in the treatment of allergic diseases are in part mediated by inhibition of IL-9 production

    Effector mechanisms of interleukin-17 in collagen-induced arthritis in the absence of interferon-Îł and counteraction by interferon-Îł

    Get PDF
    Introduction Interleukin (IL)-17 is a pro-inflammatory cytokine in rheumatoid arthritis (RA) and collagen-induced arthritis ( CIA). Since interferon (IFN)-gamma inhibits Th17 cell development, IFN-gamma receptor knockout (IFN-gamma R KO) mice develop CIA more readily. We took advantage of this model to analyse the mechanisms of action of IL-17 in arthritis. The role of IFN-gamma on the effector mechanisms of IL-17 in an in vitro system was also investigated. Methods IFN-gamma R KO mice induced for CIA were treated with anti-IL-17 or control antibody. The collagen type II (CII)-specific humoral and cellular autoimmune responses, myelopoiesis, osteoclastogenesis, and systemic cytokine production were determined. Mouse embryo fibroblasts (MEF) were stimulated with IL-17, tumor necrosis factor (TNF)-alpha and the expression of cytokines and chemokines were determined. Results A preventive anti-IL-17 antibody treatment inhibited CIA in IFN gamma R KO mice. In the joints of anti-IL-17-treated mice, neutrophil influx and bone destruction were absent. Treatment reduced the cellular autoimmune response as well as the splenic expansion of CD11b(+) cells, and production of myelopoietic cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-6. IL-17 and TNF-alpha synergistically induced granulocyte chemotactic protein-2 (GCP-2), IL-6 and receptor activator of NF kappa B ligand (RANKL) in MEF. This induction was profoundly inhibited by IFN-gamma in a STAT-1 (signal transducer and activator of transcription-1)dependent way. Conclusions In the absence of IFN-gamma, IL-17 mediates its proinflammatory effects mainly through stimulatory effects on granulopoiesis, neutrophil infiltration and bone destruction. In vitro IFN-gamma profoundly inhibits the effector function of IL-17. Thus, aside from the well-known inhibition of the development of Th17 cells by IFN-gamma, this may be an additional mechanism through which IFN-gamma attenuates autoimmune diseases

    Selective pathogenicity of murine rheumatoid factors of the cryoprecipitable IgG3 subclass

    Get PDF
    To analyze the involvement of rheumatoid factors (RF) in the generation of cryoglobulins and the development of related tissue injuries, we have established a panel of anti-IgG2a RF mAbs derived from MRL/MpJ-lpr/lpr (MRL-lpr), C3H/HeJ-lpr/lpr, and 129/Sv mice. After injection of hybridoma cells to normal mice, all four IgG3 RF mAbs induced cryoglobullnemia, and various degrees of glomerulonephritis and skin leukocytoclastic vasculitis. In contrast, none of the RF mAbs of the other isotypes generated cryoglobulins or tissue lesions. Since the same observation was obtained with another panel of five clonally related anti-IgG2a RF mAbs of MRL-lpr origin with almost Identical heavy and light chain variable (V) regions but five different Isotypes, it seems unlikely that the absence of pathogenicity of non-IgG3 RF mAbs was due to differences in fine specificity or V framework regions. In addition, the analysis of serum RF In MRL-lpr mice has demonstrated that a majority of 4 month old MRL-lpr mice produced substantial amounts of IgG3 RF with cryoglobulin activity. Because the cryoglobulin activity is associated with the murine IgG3 heavy chain constant region, RF of this subclass may play a significant role in the development of autoimmune-related tissue injuries, especially In MRL-lpr mic

    Tumor heterogeneity in VHL drives metastasis in clear cell renal cell carcinoma

    Get PDF
    Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor

    Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis

    Get PDF
    Atherosclerosis is an inflammatory vascular disease responsible for the first cause of mortality worldwide. Recent studies have clearly highlighted the critical role of the immunoinflammatory balance in the modulation of disease development and progression. However, the immunoregulatory pathways that control atherosclerosis remain largely unknown. We show that loss of suppressor of cytokine signaling (SOCS) 3 in T cells increases both interleukin (IL)-17 and IL-10 production, induces an antiinflammatory macrophage phenotype, and leads to unexpected IL-17–dependent reduction in lesion development and vascular inflammation. In vivo administration of IL-17 reduces endothelial vascular cell adhesion molecule–1 expression and vascular T cell infiltration, and significantly limits atherosclerotic lesion development. In contrast, overexpression of SOCS3 in T cells reduces IL-17 and accelerates atherosclerosis. We also show that in human lesions, increased levels of signal transducer and activator of transcription (STAT) 3 phosphorylation and IL-17 are associated with a stable plaque phenotype. These results identify novel SOCS3-controlled IL-17 regulatory pathways in atherosclerosis and may have important implications for the understanding of the increased susceptibility to vascular inflammation in patients with dominant-negative STAT3 mutations and defective Th17 cell differentiation

    B cell depletion reduces the development of atherosclerosis in mice

    Get PDF
    B cell depletion significantly reduces the burden of several immune-mediated diseases. However, B cell activation has been until now associated with a protection against atherosclerosis, suggesting that B cell–depleting therapies would enhance cardiovascular risk. We unexpectedly show that mature B cell depletion using a CD20-specific monoclonal antibody induces a significant reduction of atherosclerosis in various mouse models of the disease. This treatment preserves the production of natural and potentially protective anti–oxidized low-density lipoprotein (oxLDL) IgM autoantibodies over IgG type anti-oxLDL antibodies, and markedly reduces pathogenic T cell activation. B cell depletion diminished T cell–derived IFN-γ secretion and enhanced production of IL-17; neutralization of the latter abrogated CD20 antibody–mediated atheroprotection. These results challenge the current paradigm that B cell activation plays an overall protective role in atherogenesis and identify new antiatherogenic strategies based on B cell modulation

    NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host–microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation

    Interleukin-6: an overview

    No full text
    • 

    corecore