16,885 research outputs found

    Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches

    Full text link
    The use of simplified models as a tool for interpreting dark matter collider searches has become increasingly prevalent, and while early Run II results are beginning to appear, we look to see what further information can be extracted from the Run I dataset. We consider three `standard' simplified models that couple quarks to fermionic singlet dark matter: an ss-channel vector mediator with vector or axial-vector couplings, and a tt-channel scalar mediator. Upper limits on the couplings are calculated and compared across three alternate channels, namely mono-jet, mono-ZZ (leptonic) and mono-W/ZW/Z (hadronic). The strongest limits are observed in the mono-jet channel, however the computational simplicity and absence of significant tt-channel model width effects in the mono-boson channels make these a straightforward and competitive alternative. We also include a comparison with relic density and direct detection constraints.Comment: 32 pages, 8 figures; v2: minor changes, conclusion unchanged, matches published versio

    Scale-factor duality in string Bianchi cosmologies

    Get PDF
    We apply the scale factor duality transformations introduced in the context of the effective string theory to the anisotropic Bianchi-type models. We find dual models for all the Bianchi-types [except for types VIIIVIII and IXIX] and construct for each of them its explicit form starting from the exact original solution of the field equations. It is emphasized that the dual Bianchi class BB models require the loss of the initial homogeneity symmetry of the dilatonic scalar field.Comment: 18 pages, no figure

    Particle Production of Vector Fields: Scale Invariance is Attractive

    Get PDF
    In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statistical anisotropy in the curvature perturbation, which may well be observable in the near future

    Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample

    Get PDF
    We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition (CVD) growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ~ 97 % probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.Comment: 6 pages, 4 figure

    Genetic and Structural Analyses of Cytoplasmic Filaments of Wild-Type Treponema phagedenis and a Flagellar Filament-Deficient Mutant

    Get PDF
    Unique cytoplasmic filaments are found in the treponeme genus of spirochete bacteria. Their function is unknown, but their location underneath the periplasmic flagellar filaments (PFF) suggests a role in motility and/or cell structure. To better understand these unique structures, the gene coding for the cytoplasmic filaments, cfpA, was identified in various treponemal species. Treponema phagedenis cfpA was 2,037 nucleotides long, and the encoded polypeptide showed 78 to 100% amino acid sequence identity with the partial sequence of CfpA from T. denticola, T. vincentii, and T. pallidum subsp. pertenue. Wild-type T. phagedenis and a PFF-deficient isolate were analyzed by electron microscopy to assess the structural relationship of the cytoplasmic filaments and the PFF. The number of cytoplasmic filaments per cell of T. phagedenis (mean, 5.7) was compared with the number of PFF at each end of the cell (mean, 4.7); the results suggest that there is no direct one-to-one correlation at the cell end. Moreover, a structural link between these structures could not be demonstrated. The cytoplasmic filaments were also analyzed by electron microscopy at different stages of cell growth; this analysis revealed that they are cleaved before or during septum formation and before the nascent formation of PFF. A PFF-deficient mutant of T. phagedenis possessed cytoplasmic filaments similar to those of the wild type, suggesting that intact PFF are not required for their assembly and regulation. The extensive conservation of CfpA among pathogenic spirochetes suggests an important function, and structural analysis suggests that it is unlikely that the cytoplasmic filaments and the flagellar apparatus are physically linked

    Coherent population trapping of a single nuclear spin under ambient conditions

    Get PDF
    Coherent control of quantum systems has far-reaching implications in quantum engineering. In this context, coherent population trapping (CPT) involving dark resonances has played a prominent role, leading to a wealth of major applications including laser cooling of atoms and molecules, optical magnetometry, light storage and highly precise atomic clocks. Extending CPT methods to individual solid-state quantum systems has been only achieved in cryogenic environments for electron spin impurities and superconducting circuits. Here, we demonstrate efficient CPT of a single nuclear spin in a room temperature solid. To this end, we make use of a three-level system with a Λ\Lambda-configuration in the microwave domain, which consists of nuclear spin states addressed through their hyperfine coupling to the electron spin of a single nitrogen-vacancy defect in diamond. Dark state pumping requires a relaxation mechanism which, in atomic systems, is simply provided by spontaneous emission. In this work, the relaxation process is externally controlled through incoherent optical pumping and separated in time from consecutive coherent microwave excitations of the nuclear spin Λ\Lambda-system. Such a pumping scheme with controlled relaxation allows us (i) to monitor the sequential accumulation of population into the dark state and (ii) to reach a new regime of CPT dynamics for which periodic arrays of dark resonances can be observed, owing to multiple constructive interferences. This work offers new prospects for quantum state preparation, information storage in hybrid quantum systems and metrology.Comment: 13 pages including supplementary information, links to figures correcte

    High resolution spectroscopy of single NV defects coupled with nearby 13^{13}C nuclear spins in diamond

    Full text link
    We report a systematic study of the hyperfine interaction between the electron spin of a single nitrogen-vacancy (NV) defect in diamond and nearby 13^{13}C nuclear spins, by using pulsed electron spin resonance spectroscopy. We isolate a set of discrete values of the hyperfine coupling strength ranging from 14 MHz to 400 kHz and corresponding to 13^{13}C nuclear spins placed at different lattice sites of the diamond matrix. For each lattice site, the hyperfine interaction is further investigated through nuclear spin polarization measurements and by studying the magnetic field dependence of the hyperfine splitting. This work provides informations that are relevant for the development of nuclear-spin based quantum register in diamond.Comment: 8 pages, 5 figure

    Coherent population trapping of a single nuclear spin under ambient conditions

    Get PDF
    Coherent control of quantum systems has far-reaching implications in quantum engineering. In this context, coherent population trapping (CPT) involving dark resonances has played a prominent role, leading to a wealth of major applications including laser cooling of atoms and molecules, optical magnetometry, light storage and highly precise atomic clocks. Extending CPT methods to individual solid-state quantum systems has been only achieved in cryogenic environments for electron spin impurities and superconducting circuits. Here, we demonstrate efficient CPT of a single nuclear spin in a room temperature solid. To this end, we make use of a three-level system with a Λ\Lambda-configuration in the microwave domain, which consists of nuclear spin states addressed through their hyperfine coupling to the electron spin of a single nitrogen-vacancy defect in diamond. Dark state pumping requires a relaxation mechanism which, in atomic systems, is simply provided by spontaneous emission. In this work, the relaxation process is externally controlled through incoherent optical pumping and separated in time from consecutive coherent microwave excitations of the nuclear spin Λ\Lambda-system. Such a pumping scheme with controlled relaxation allows us (i) to monitor the sequential accumulation of population into the dark state and (ii) to reach a new regime of CPT dynamics for which periodic arrays of dark resonances can be observed, owing to multiple constructive interferences. This work offers new prospects for quantum state preparation, information storage in hybrid quantum systems and metrology.Comment: 13 pages including supplementary information, links to figures correcte

    The unmasking of thermal Goldstone bosons

    Full text link
    The problem of extracting the modes of Goldstone bosons from a thermal background is reconsidered in the framework of relativistic quantum field theory. It is shown that in the case of spontaneous breakdown of an internal bosonic symmetry a recently established decomposition of thermal correlation functions contains certain specific contributions which can be attributed to a particle of zero mass.Comment: 7 pages, LaTeX; new and considerably strengthened results after Eq. (14); to appear in Phys. Rev.
    • …
    corecore