386 research outputs found

    Load sensing surgical instruments

    Get PDF
    Force and pressure sensing technology applied to smart surgical instruments as well as implants allow to give a direct feedback of loads to the surgeon lead to better reliability and success of surgical operations. A common technology used for sensors is low-cost piezoresistive thick-film technology. However, the standard thick-film firing conditions degrade the properties of medical alloys. In order to avoid this problem, the solution is to decrease the firing temperature of thick films. This work presents the development and characterisation of low-firing thick-film systems (dielectrics, resistors and conductors), formulated to achieve chemical and thermal expansion compatibility with an austenitic stainless steel medical alloy. Adherence tests and results on electrical properties of these systems: resistance, temperature coefficient of resistance (TCR) are presented. It was found that the main issue in these systems lies in mastering the materials interactions during firing, especially at the silver-based resistor terminations. The interaction of silver, resistor and dielectric tends to give rise to highly resistive zones at the terminations, affecting reliability. This can be circumvented by post-firing the resistor terminations at a moderate temperatur

    Tracing early evolutionary stages of high-mass star formation with molecular lines

    Get PDF
    Despite its major role in the evolution of the interstellar medium, the formation of high-mass stars (M > 10 Msol) is still poorly understood. Two types of massive star cluster precursors, the so-called Massive Dense Cores (MDCs), have been observed, which differ in their mid-infrared brightness. The origin of this difference is not established and could be the result of evolution, density, geometry differences, or a combination of these. We compare several molecular tracers of physical conditions (hot cores, shocks) observed in a sample of mid-IR weak emitting MDCs with previous results obtained in a sample of exclusively mid-IR bright MDCs. The aim is to understand the differences between these two types of object. We present single-dish observations of HDO, H2O-18, SO2 and CH3OH lines at lambda = 1.3 - 3.5 mm. We study line profiles and estimate abundances of these molecules, and use a partial correlation method to search for trends in the results. The detection rates of thermal emission lines are found to be very similar between mid-IR quiet and bright objects. The abundances of H2O, HDO (1E-13 to 1E-9 in the cold outer envelopes), SO2 and CH3OH differ from source to source but independently of their mid-IR flux. In contrast, the methanol class I maser emission, a tracer of outflow shocks, is found to be strongly anti-correlated with the 12 micron source brightnesses. The enhancement of the methanol maser emission in mid-IR quiet MDCs may indicate a more embedded nature. Since total masses are similar between the two samples, we suggest that the matter distribution is spherical around mid-IR quiet sources but flattened around mid-IR bright ones. In contrast, water emission is associated with objects containing a hot molecular core, irrespective of their mid-IR brightness. These results indicate that the mid-IR brightness of MDCs is an indicator of their evolutionary stage.Comment: 15 pages, 6 figures, 11 tables, accepted for publication in A&A the 11/06/201

    The Bell Laboratories (13)CO Survey: Longitude-Velocity Maps

    Full text link
    A survey is presented of the Galactic plane in the J=1-0 transition of (13)CO. About 73,000 spectra were obtained with the 7 m telescope at Bell Laboratories over a ten-year period. The coverage of survey is (l, b) = (-5 to 117, -1 to +1), or 244 square degrees, with a grid spacing of 3' for |b| < 0.5, and a grid spacing of 6' for |b| > 0.5. The data presented here have been resampled onto a 3' grid. For 0.68 km/s channels, the rms noise level of the survey is 0.1 K on the TR∗T_R^* scale. The raw data have been transformed into FITS format, and all the reduction processes, such as correcting for emission in the reference positions, baseline removal and interpolation were conducted within IRAF using the FCRAO task package and additional programs. The reduced data are presented here in the form of longitude-velocity color maps at each latitude. These data allow identification and classification of molecular clouds with masses in excess of ~ 1,000 solar masses throughout the first quadrant of the Galaxy. Spiral structure is manifested by the locations of the largest and brightest molecular clouds.Comment: 23 pages, 7 figures, ApJS submitted (out of 41 frames of Figure4, only one is included becaue of size limit

    Ultra-low pressure sensor for neonatal resuscitator

    Get PDF
    AbstractA Venturi-type flow sensor has been designed and fabricated for neonatal respiratory assistance to control airway pressure and tidal volume. As the low flow range and sensing principle require the measurement of correspondingly very low pressures, a very responsive sensor, based on a polymer membrane acting onto a piezoresistive cantilever force sensor based on low-temperature co-fired ceramic (LTCC), was developed. This paper details the 3D modelling, manufacture, assembly and characterisation of the sensor. Compared to expensive and fragile MEMS-based devices, this sensor, based on LTCC, thick-film technology and polymer parts, provides an accurate and robust, yet low-cost alternative

    The Water Vapor Abundance in Orion KL Outflows

    Get PDF
    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.Comment: Accepted for publication in ApJ letters [2006 August 7] (5 pages 2, figures, not edited

    Detection of water at z = 0.685 towards B0218+357

    Get PDF
    We report the detection of the H_2O molecule in absorption at a redshift z = 0.68466 in front of the gravitationally lensed quasar B0218+357. We detect the fundamental transition of ortho-water at 556.93 GHz (redshifted to 330.59 GHz). The line is highly optically thick and relatively wide (15 km/s FWHM), with a profile that is similar to that of the previously detected CO(2--1) and HCO^+(2--1) optically thick absorption lines toward this quasar. From the measured level of the continuum at 330.59 GHz, which corresponds to the level expected from the power-law spectrum S(Îœ)∝Μ−0.25S(\nu) \propto \nu^{-0.25} already observed at lower frequencies, we deduce that the filling factor of the H_2O absorption is large. It was already known from the high optical thickness of the CO, ^{13}CO and C^{18}O lines that the molecular clouds entirely cover one of the two lensed images of the quasar (all its continuum is absorbed); our present results indicate that the H_2O clouds are covering a comparable surface. The H_2O molecules are therefore not confined to small cores with a tiny filling factor, but are extended over parsec scales. The H_2O line has a very large optical depth, and only isotopic lines could give us the water abundance. We have also searched for the 183 GHz line in absorption, obtaining only an upper limit; this yields constraints on the excitation temperature.Comment: 4 pages, 3 figures, accepted in ApJ Letter

    Selective Methylation of Arenes: A Radical C−H Functionalization/Cross‐Coupling Sequence

    Get PDF
    A selective, nonchelation‐assisted methylation of arenes has been developed. The overall transformation, which combines a C−H functionalization reaction with a nickel‐catalyzed cross‐coupling, offers rapid access to methylated arenes with high para selectivity. The reaction is amenable to late‐stage methylation of small‐molecule pharmaceuticals

    Multi-line Herschel/HIFI observations of water reveal infall motions and chemical segregation around high-mass protostars

    Get PDF
    (Abridged) We use HIFI maps of the 987 GHz H2O 2(02)-1(11) emission to measure the sizes and shapes of 19 high-mass protostellar envelopes. To identify infall, we use HIFI spectra of the optically thin C18O 9-8 and H2O-18 1(11)-0(00) lines. The high-J C18O line traces the warm central material and redshifted H2O-18 1(11)-0(00) absorption indicates material falling onto the warm core. We probe small-scale chemical differentiation by comparing H2O 752 and 987 GHz spectra with those of H2O-18. Our measured radii of the central part of the H2O 2(02)-1(11) emission are 30-40% larger than the predictions from spherical envelope models, and axis ratios are <2, which we consider good agreement. For 11 of the 19 sources, we find a significant redshift of the H2O-18 1(11)-0(00) line relative to C18O 9-8. The inferred infall velocities are 0.6-3.2 km/s, and estimated mass inflow rates range from 7e-5 to 2e-2 M0/yr, with the highest mass inflow rates occurring toward the sources with the highest masses, and possibly the youngest ages. The other sources show either expanding motions or H2O-18 lines in emission. The H2O-18 1(11)-0(00) line profiles are remarkably similar to the "differences" between the H2O 2(02)-1(11) and 2(11)-2(02) profiles, suggesting that the H2O-18 line and the H2O 2(02)-1(11) absorption originate just inside the radius where water evaporates from grains, typically 1000-5000 au from the center. In some sources, the H2O-18 line is detectable in the outflow, where no C18O emission is seen. Together, the H2O-18 absorption and C18O emission profiles show that the water abundance around high-mass protostars has at least three levels: low in the cool outer envelope, high within the 100 K radius, and very high in the outflowing gas. Thus, despite the small regions, the combination of lines presented here reveals systematic inflows and chemical information about the outflows.Comment: Accepted for publication in Astronomy & Astrophysics; 10 pages body + 10 pages appendi

    Discovery of Interstellar Hydrogen Fluoride

    Get PDF
    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2 - 1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of 3E-10 relative to H2. If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for ~ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (~ 5 sigma) for an emission feature at the expected position of the 4(3,2)-4(2,3) 121.7219 micron line of water. The emission line equivalent width of 0.5 nm for the water feature is consistent with the water abundance of 5E-6 relative to H2 that has been inferred previously from observations of the hot core of Sgr B2.Comment: 11 pages (AASTeX using aaspp4.sty) plus 2 figures; to appear in ApJ Letter
    • 

    corecore