We report the first detection of interstellar hydrogen fluoride. Using the
Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO), we
have detected the 121.6973 micron J = 2 - 1 line of HF in absorption toward the
far-infrared continuum source Sagittarius B2. The detection is statistically
significant at the 13 sigma level. On the basis of our model for the excitation
of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a
hydrogen fluoride abundance of 3E-10 relative to H2. If the elemental abundance
of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts
for ~ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to
be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed
rapidly in exothermic reactions of atomic fluorine with either water or
molecular hydrogen; thus the measured HF abundance suggests a substantial
depletion of fluorine onto dust grains. Similar conclusions regarding depletion
have previously been reached for the case of chlorine in dense interstellar
clouds. We also find evidence at a lower level of statistical significance (~ 5
sigma) for an emission feature at the expected position of the 4(3,2)-4(2,3)
121.7219 micron line of water. The emission line equivalent width of 0.5 nm for
the water feature is consistent with the water abundance of 5E-6 relative to H2
that has been inferred previously from observations of the hot core of Sgr B2.Comment: 11 pages (AASTeX using aaspp4.sty) plus 2 figures; to appear in ApJ
Letter