

Available online at www.sciencedirect.com

Procedia Engineering 5 (2010) 532-535

www.elsevier.com/locate/procedia

Proc. Eurosensors XXIV, September 5-8, 2010, Linz, Austria

Ultra-low pressure sensor for neonatal resuscitator

C.Jacq^{a*}, T.Maeder^a, E.Haemmerle^b, N.Craquelin^a, P.Ryser^a

^aLaboratoire de Production Microtechnique (LPM), EPFL, Lausanne, Switzerland ^bDepartment of Mechanical Engineering, University of Auckland, New Zealand

Abstract

A Venturi-type flow sensor has been designed and fabricated for neonatal respiratory assistance to control airway pressure and tidal volume. As the low flow range and sensing principle require the measurement of correspondingly very low pressures, a very responsive sensor, based on a polymer membrane acting onto a piezoresistive cantilever force sensor based on low-temperature co-fired ceramic (LTCC), was developed. This paper details the 3D modelling, manufacture, assembly and characterisation of the sensor. Compared to expensive and fragile MEMS-based devices, this sensor, based on LTCC, thick-film technology and polymer parts, provides an accurate and robust, yet low-cost alternative.

© 2010 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Keywords: pressure sensor; Venturi flow sensor; LTCC; thick-film technology.

1. Introduction

Of over 100 million babies born each year in the western world, 10 million require some form of resuscitation assistance. More than 1 million die from complications of birth asphyxia [1]. Advances in neonatal care have led to significant improvements in the survival of preterm infants, but Chronic Lung Disease (CLD) continues to be a major problem, affecting about 20% of infants who need respiratory assistance [2] and thus being the major long-term pulmonary complication of preterm birth. Neonatal resuscitators used for first-response activities provide a flow of air or air/oxygen mixture to the patient via either a mask or an endotracheal tube. Current neonatal resuscitators monitor and limit delivery pressure and hence avoid the risk of excessive pressure but they do not control the actual tidal air volume exchanged during resuscitation which is important for survival. A new neonatal resuscitator limits delivery pressure and controls tidal volume and respiratory rate simultaneously, requiring accurate measurement of the pressure and the volume flow of air (Fig. 1a) [3]. The target specification for the differential pressure is 50 Pa with an accuracy of 1 Pa to detect the very small flow between 1-4 ml/s necessary for the smallest preterm neonates.

1877-7058 © 2010 Published by Elsevier Ltd. Open access under CC BY-NC-ND license. doi:10.1016/j.proeng.2010.09.164

^{*} Corresponding author. Tel.: +41-21-693-5385; fax: +41-21-693-3891. E-mail address: caroline.jacq@epfl.ch

Fig.1. (a) neonatal respiratory assistance (source: www.kmedical.co.nz); (b) 3D view & working principle of Venturi tube used to convert flow into pressure.

To this end, we have developed a flow sensor integrated in the Neonatal Resuscitator/Ventilator using the Venturi principle (Fig. 1b) to convert flow into pressure differences. In this work, after presenting the flow sensor concept, we mainly concentrate on the ultra low pressure sensor: its manufacture and assembly and extensive characterisation.

2. New Resuscitator concept and design

In order to limit delivery pressure and hereby control airway pressure and tidal air volume, the resuscitator makes use of a Venturi tube mounted in parallel to an ultra-low pressure sensor to measure the pressure drop in the Venturi.

2.1. Venturi

The Venturi is characterised by the cross section ratio A_1/A_2 (Fig. 1b), which has a direct impact on the pressure range. Smaller cross sections A_2 of the constriction give higher pressure drops (i.e. increased sensitivity), allowing measurement of smaller flows, but also lead to higher losses. Ideally (not accounting for losses or compressibility), the pressure difference $\Delta p_{ij} = p_i - p_i$ for a volume flow Q of a fluid of density ρ is given by (1):

$$Q^{2} = -\frac{2}{\rho} \cdot \frac{p_{i} - p_{j}}{A_{i}^{-2} - A_{j}^{-2}}$$
(1)

To detect the very low flow close to 1 ml/s, we have used a Venturi tube 37 mm long (Fig 2.). The entry and exit diameters are respectively 15.2 mm and 13 mm. The constriction is 3.5 mm long with a 1.8 mm diameter. The entry and exit angle are 30° and 7° . This Venturi allows the measurement of the pressure range between 0 and 50 Pa with an accuracy requirement of 1 Pa.

Fig. 2. 3D view of the Venturi tube

Fig. 3. (a) Elastomer membrane with reinforcing central structure mounted on LTCC cantilever sensor; (b) LTCC cantilever - bottom side.

2.2. Ultra-low pressure sensor

The differential pressure sensor is based on a sensitive membrane-cantilever combination: a very compliant elastomeric membrane with a central rigid area (effective diameter 26 mm, Fig. 3a) efficiently converts the pressure into a force that is measured by the LTCC cantilever force sensor (Fig. 3b). Compared to classical thick-film technology, LTCC allows the fabrication of much more sensitive devices, due to its lower elastic modulus, availability of very thin tapes and high structurability [4,5]. Moreover the LTCC manufacturing process allows cutting out the beam in order to increase the sensitivity of the piezoresistive bridge. To address the challenge of achieving a high signal at low loads, yet with moderate overall deflection, the LTCC design was refined by finiteelement modelling (FEM, Fig. 4). Optimisation yielded a two-layer structure: 1) a thick layer (254 / ~210 µm green / fired) carrying the piezoresistors and locally narrowed to concentrate compressive stresses, and 2) a thin opposite layer (114 / 100 µm green / fired) that is not structured. The local narrowing around the resistors concentrates the compressive stresses, optimising sensing performance (Fig. 4a), while the tensile stresses, taken up by the whole width on the other side, remain moderate (Fig. 4b). Another advantage is that the strains are concentrated where they are needed (i.e. for measurement), conserving stiffness. Fabrication of the sensing cantilevers was carried out as in our previous work [5,6], with the DuPont 951 LTCC materials system and DuPont 2041 piezoresistors. The resulting LTCC cantilever was then soldered as an SMD (surface-mount device) component onto a thick-film base that also comprises the amplification and adjustment electronic circuit [6,7].

3. Characterisation

Fig. 4. Von Mises stress distribution by FEM on (a) bottom side and (b) top side of cantilever.

The output-pressure relationship of the sensors were then determined (Fig. 5), indicating an ability to measure ultra low pressures of 0.2 Pa and very small flows (~1 ml s) through the Venturi. Although Venturis with a narrow constriction are more sensitive (i.e. create a larger pressure drop, see equation 1), the non-recoverable pressure losses (i.e. $\Delta p_{13} = p_1 - p_3$) are similar in magnitude to the measured pressure difference $\Delta p_{12} = p_1 - p_2$. Therefore improvement of the design to achieve smoother flow transitions and reduce turbulence losses is still needed. As the sensitivities of the LPM force sensors were laser trimmed to be identical within 2%, the observed lower overall sensitivity of the completed pressure sensors (LPM sensors 6-2 and 7-1) can therefore be attributed to assembly problems.

Fig. 5. Signal of different sensors assembled with the Venturi tube as a function of the pressure (a), with zoom for low flows in (b). Output signals shifted for better readability.

4. Conclusions

We succeeded in developing an ultra-low pressure sensor sensitive to pressure differences close to 1 Pa. Assembled to a Venturi, this device allows accurate measurement of very small air flows, which is required for new generation Neonatal Resuscitator/Ventilators that control airway pressure, respiratory rate and tidal volume simultaneously. The Venturis used here, however, still need improvement to optimise the generated pressure difference while limiting pressure losses.

Acknowledgements

The authors gratefully acknowledge financial support from the Swiss CTI innovation promotion agency (grant 10786.1 PFNM-NM) and Logan Stuart, of the Department of Mechanical Engineering at the University of Auckland for his useful help with the measurement setup.

References

- Thomas MD. Respiratory Care 2003;48 (3):288-294 Neonatal Resuscitation Wiswell, SUNY Stony Brook, Pediatrics, Stony Brook NY USA.
- [2] Sweet DG, Halliday H. Modeling and remodeling of the lung in neonatal chronic lung disease: Implications for therapy, *Treatments in Respiratory Medicine* 2005;4(5):347-359.
- [3] Next Step Neonatal Resuscitator, www.kmmedical.co.nz
- [4] Belavič D, Hrovat M, Santo-Zarnik M, Cilenšek J, Kita J, Golonka L, Dziedzic A, Smetana W, Homolka H, Reicher R. Benchmarking different substrates for thick-film sensors of mechanical quantities. Proceedings of the 15th European Microelectronics and Packaging Conference (EMPC-IMAPS), Brugge, Belgium, 2005:216-221.
- [5] Birol H, Maeder T, Nadzeyka I, Boers M, Ryser P. Fabrication of a millinewton force sensor using low temperature co-fired ceramic (LTCC) technology, Sensors and Actuators A 2007;134:334-338.
- [6] Craquelin N, Maeder T, Fournier Y, Ryser P. Low-cost LTCC-based sensors for low force ranges, *Proceedia Chemistry* 2009;1(1):899-902.
- [7] Birol H, Maeder T, Boers M, Jacq C, Corradini G, Ryser P. Milinewton force sensor based on low temperature co-fired ceramic (LTCC) technology, *PhD Research in Microelectronics and Electronics - IEEE PRIME* 2005;2:139-142.