340 research outputs found

    Quantum Computing: Resolving Myths, From Physics to Metaphysics

    Get PDF
    As the field of quantum computing becomes popularized, myths or misconceptions will inevitably come along with it. From the sci-fi genre to the casual usage of the term quantum, idealism begins to take over our projections of the technological future. But what are quantum computers? And what does quantum mean? How are they any different than the computers we use on an everyday basis? Will there be quantum computing smartphones? Are quantum computers just a faster version of conventional computing or a wholly new way of computing altogether? The objective of this paper is to resolve common myths or misconceptions about the concept of quantum computers, as well as the outlook and potential of this technology. In the attempt to construct a sound narrative involving a wide range of disciplines, we will draw concepts from classical computing, quantum physics, computational complexity, as well as philosophy to decipher the mystery within this unique field

    Predicting and controlling the reactivity of immune cell populations against cancer

    Get PDF
    Heterogeneous cell populations form an interconnected network that determine their collective output. One example of such a heterogeneous immune population is tumor-infiltrating lymphocytes (TILs), whose output can be measured in terms of its reactivity against tumors. While the degree of reactivity varies considerably between different TILs, ranging from null to a potent response, the underlying network that governs the reactivity is poorly understood. Here, we asked whether one can predict and even control this reactivity. To address this we measured the subpopulation compositions of 91 TILs surgically removed from 27 metastatic melanoma patients. Despite the large number of subpopulations compositions, we were able to computationally extract a simple set of subpopulation-based rules that accurately predict the degree of reactivity. This raised the conjecture of whether one could control reactivity of TILs by manipulating their subpopulation composition. Remarkably, by rationally enriching and depleting selected subsets of subpopulations, we were able to restore anti-tumor reactivity to nonreactive TILs. Altogether, this work describes a general framework for predicting and controlling the output of a cell mixture

    The Optical and Near-Infrared Transmission Spectrum of the Super-Earth GJ1214b: Further Evidence for a Metal-Rich Atmosphere

    Full text link
    We present an investigation of the transmission spectrum of the 6.5 M_earth planet GJ1214b based on new ground-based observations of transits of the planet in the optical and near-infrared, and on previously published data. Observations with the VLT+FORS and Magellan+MMIRS using the technique of multi-object spectroscopy with wide slits yielded new measurements of the planet's transmission spectrum from 0.61 to 0.85 micron, and in the J, H, and K atmospheric windows. We also present a new measurement based on narrow-band photometry centered at 2.09 micron with the VLT+HAWKI. We combined these data with results from a re-analysis of previously published FORS data from 0.78 to 1.00 micron using an improved data reduction algorithm, and previously reported values based on Spitzer data at 3.6 and 4.5 micron. All of the data are consistent with a featureless transmission spectrum for the planet. Our K-band data are inconsistent with the detection of spectral features at these wavelengths reported by Croll and collaborators at the level of 4.1 sigma. The planet's atmosphere must either have at least 70% water by mass or optically thick high-altitude clouds or haze to be consistent with the data.Comment: (v2) ApJ in press, no major changes from v

    Transcriptional Regulation by Competing Transcription Factor Modules

    Get PDF
    Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input–output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits

    Genetics and Plant Development

    Get PDF
    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different – while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later – as late as the 1980s

    The GJ1214 Super-Earth System: Stellar Variability, New Transits, and a Search for Additional Planets

    Full text link
    The super-Earth GJ1214b transits a nearby M dwarf that exhibits 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, mostly likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze 2 high-precision transit light curves from ESO's Very Large Telescope along with 7 others from the MEarth and FLWO 1.2 meter telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V -band estimate for the star, finding V = 14.71 \pm 0.03.Comment: 16 pages, 10 figures, 6 tables, in emulateapj format. Published in ApJ. Replaced a missing reference in section 6.

    Single-Spin Addressing in an Atomic Mott Insulator

    Get PDF
    Ultracold atoms in optical lattices are a versatile tool to investigate fundamental properties of quantum many body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be extended down to the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focussed laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line and observed that our addressing scheme leaves the atoms in the motional ground state. Our results open the path to a wide range of novel applications from quantum dynamics of spin impurities, entropy transport, implementation of novel cooling schemes, and engineering of quantum many-body phases to quantum information processing.Comment: 8 pages, 5 figure
    • 

    corecore