1,040 research outputs found

    Utility of mass spectrometry for the diagnosis of the unstable coronary plaque.

    Get PDF
    Mass spectrometry is a powerful technique that is used to identify unknown compounds, to quantify known materials, and to elucidate the structure and chemical properties of molecules. Recent advances in the accuracy and speed of the technology have allowed data acquisition for the global analysis of lipids from complex samples such as blood plasma or serum. Here, mass spectrometry as a tool is described, its limitations explained and its application to biomarker discovery in coronary artery disease is considered. In particular an application of mass spectrometry for the discovery of lipid biomarkers that may indicate plaque morphology that could lead to myocardial infarction is elucidated

    A mycorrhizal revolution.

    Get PDF
    It has long been postulated that symbiotic fungi facilitated plant migrations onto land through enhancing the scavenging of mineral nutrients and exchanging these for photosynthetically fixed organic carbon. Today, land plant-fungal symbioses are both widespread and diverse. Recent discoveries show that a variety of potential fungal associates were likely available to the earliest land plants, and that these early partnerships were probably affected by changing atmospheric CO2 concentrations. Here, we evaluate current hypotheses and knowledge gaps regarding early plant-fungal partnerships in the context of newly discovered fungal mutualists of early and more recently evolved land plants and the rapidly changing views on the roles of plant-fungal symbioses in the evolution and ecology of the terrestrial biosphere

    Complete analysis of the B-cell response to a protein antigen, from in vivo germinal centre formation to 3-D modelling of affinity maturation

    Get PDF
    Somatic hypermutation of immunoglobulin variable region genes occurs within germinal centres (GCs) and is the process responsible for affinity maturation of antibodies during an immune response. Previous studies have focused almost exclusively on the immune response to haptens, which may be unrepresentative of epitopes on protein antigens. In this study, we have exploited a model system that uses transgenic B and CD4<sup>+</sup> T cells specific for hen egg lysozyme (HEL) and a chicken ovalbumin peptide, respectively, to investigate a tightly synchronized immune response to protein antigens of widely differing affinities, thus allowing us to track many facets of the development of an antibody response at the antigen-specific B cell level in an integrated system <i>in</i> <i>vivo</i>. Somatic hypermutation of immunoglobulin variable genes was analysed in clones of transgenic B cells proliferating in individual GCs in response to HEL or the cross-reactive low-affinity antigen, duck egg lysozyme (DEL). Molecular modelling of the antibody–antigen interface demonstrates that recurring mutations in the antigen-binding site, selected in GCs, enhance interactions of the antibody with DEL. The effects of these mutations on affinity maturation are demonstrated by a shift of transgenic serum antibodies towards higher affinity for DEL in DEL-cOVA immunized mice. The results show that B cells with high affinity antigen receptors can revise their specificity by somatic hypermutation and antigen selection in response to a low-affinity, cross-reactive antigen. These observations shed further light on the nature of the immune response to pathogens and autoimmunity and demonstrate the utility of this novel model for studies of the mechanisms of somatic hypermutation

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Get PDF
    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization

    Design of a web-based LBS framework addressing usability, cost, and implementation constraints

    Get PDF
    This research investigates barriers that prevent Location Based Services (LBS) from reaching its full potential. The different constraints, including poor usability, lack of positioning support, costs, and integration difficulties are highlighted. A framework was designed incorporating components based on existing and new technologies that could help address the constraints of LBS and increase end-user acceptance. This research proposes that usability constraints can be addressed by adapting a system to user characteristics which are inferred on the basis of captured user context and interaction data. A prototype LBS system was developed to prove the feasibility and benefit of the framework design, demonstrating that constraints of positioning, cost, and integration can be overcome. Volunteers were asked to use the system, and to answer questions in relation to their proficiency and experience. User-feedback showed that the proposed combination of functionality was well-received, and the prototype was appealing to many users. Ground-truths from the survey were related back to data captured with a user monitoring component in order to investigate whether users can be classified according to their context and how they interact. The results have shown that statistically significant relationships exist, and that by using the C4.5 decision-tree, computer proficiency can be estimated within one class-width in 76.7% of the cases. These results suggest that it may be possible to build a user-model to estimate computer proficiency on the basis of user-interaction data. The user model could then used to improve usability through adaptive user-specific customisations

    Deflazacort for the treatment of Duchenne Dystrophy: A systematic review

    Get PDF
    BACKGROUND: To complete a systematic review and meta-analysis based on the clinical question: Is Deflazacort (DFZ), a prednisolone derivative, an effective therapy for improving strength, with acceptable side effects, in children with Duchenne Dystrophy (DD)? METHODS: MEDLINE, EMBASE, Current Contents, Dissertation Abstracts, Health Star, PsychINFO and Cochrane, were searched using the following inclusion criteria: 1) A randomized controlled trial comparing DFZ with placebo or another therapy; 2) Male participants age 2–18 years with DD; 3) Outcomes of (a) any form of strength or functional testing, or (b) any form of side effect. RESULTS: Fifteen studies of potential relevance were identified, with five meeting the inclusion criteria. These five studies included 291 children and were published in English language journals between 1994 and 2000. Two studies compared DFZ versus placebo, two studies compared DFZ with prednisone and one study had both placebo and prednisone comparisions. Two large trials were identified that have not been published in article format. Due to the heterogeneity in outcome measures and the inconsistent reporting of summary statistics a meta-analytic approach could not be taken. CONCLUSIONS: Examining individual studies it appears that DFZ improves strength and functional outcomes compared to placebo, but it remains unclear if it has a benefit over prednisone on similar outcomes. Two trials found that DFZ causes less weight gain than prednisone

    Citrulline supplementation improves organ perfusion and arginine availability under conditions with enhanced arginase activity

    Get PDF
    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients
    • …
    corecore