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Abstract: Enhanced arginase-induced arginine consumption is believed to play a key role 

in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine 

availability with L-arginine supplementation exhibited less consistent results; however,  

L-citrulline, the precursor of L-arginine, may be a promising alternative. In this study, we 
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determined the effects of L-citrulline compared to L-arginine supplementation on arginine-nitric 

oxide (NO) metabolism, arginine availability and microcirculation in a murine model with 

acutely-enhanced arginase activity. The effects were measured in six groups of mice  

(n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with 

or without being separately injected with L-citrulline or L-arginine 1 h prior to assessment of 

the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production 

with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in 

plasma and tissue arginine concentrations. L-arginine and L-citrulline supplementation both 

enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only 

the citrulline supplementation increased NO production and improved microcirculatory flow 

in arginase-injected mice. In conclusion, the present study provides for the first time in vivo 

experimental evidence that L-citrulline, and not L-arginine supplementation, improves the end 

organ microcirculation during conditions with acute arginase-induced arginine deficiency by 

increasing the NO concentration in tissues. 
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1. Introduction 

Sickle cell disease can be affected by acute life-threatening complications, such as recurrent  

vaso-occlusive events, pulmonary hypertension and severe hemolysis [1,2]. In an acute crisis with 

intravascular hemolysis [3,4], arginase is released in large quantities by damaged red blood cells [1,4,5]. 

This arginase rapidly consumes the locally-available arginine, leading to a diminished production of the 

main vasodilator of the microcirculation, nitric oxide (NO) production [6], which contributes to an 

impaired microvascular flow, resulting in end-organ damage [1,2]. Therefore, arginase-induced arginine 

deficiency is believed to play a key role in the pathogenesis of sickle cell disease-induced end-organ 

failure [2,7,8]. Other mechanisms possibly contributing to the decreased microvascular flow are 

increased oxidative stress and the release of hemoglobin from the damaged red blood cells, which 

consumes NO [3,4]. Therefore, supplementing arginine to restore the depleted arginine pools was 

suggested to be a good therapeutic approach to treat end-organ damage in sickle cell disease [9]. 

Previous studies with L-arginine supplementation in transgenic sickle cell mice showed a reduction 

in oxidative stress and hemolysis and increased NOx concentrations [10,11]. However, clinical results 

using L-arginine were less consistent. In a non-controlled patient study, L-arginine supplementation 

reduced pulmonary pressure, but also tended to further increase arginase activity [5]. Another study 

similarly found that L-arginine supplementation increased arginase activity, but found no increase in 

NOx concentrations [7]. A third study showed highly variable changes in exhaled NO concentrations 

during L-arginine supplementation, while no effects on clinical parameters were found [12]. Finally,  

in a study comparing L-arginine with a phosphodiesterase inhibitor, no clinical benefits were found 

during L-arginine supplementation [13], suggesting no extra NO production. In these patients, ornithine 

concentrations increased significantly, suggesting an enhanced arginase activity, while citrulline 

concentrations were unchanged. 
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Instead of L-arginine, its precursor, L-citrulline, which is endogenously produced in the gut [14,15], 

may be the preferred substrate to enhance intracellular arginine availability by enhancing arginine  

de novo synthesis and NO production in pathophysiological conditions with increased arginase activity, 

resulting in enhanced arginine consumption, such as sickle cell disease [16] or endotoxemia [17]. As  

for endotoxemia, another condition with high arginase activity, L-citrulline supplementation resulted in 

increased NO production and better microvascular flow than L-arginine supplementation [17]. In sickle 

cell disease, only one non-controlled pilot study showed that citrulline supplementation enhanced the 

arginine availability and relieved fatigue and dyspnea in these patients [16]. However, the effects of  

L-citrulline supplementation on the microcirculatory flow and tissue NO production have not been 

determined or compared to that of L-arginine supplementation in a preclinical setting in experimental 

conditions with an acute increase of arginase [16,18]. We, therefore, prior to a clinical study, determined 

the effect of L-citrulline compared to L-arginine supplementation on arginine-NO metabolism, arginine 

availability in blood, kidney, liver and jejunal tissue and the microcirculation in the jejunum of mice 

with an acutely-enhanced circulating concentration of arginase. 

2. Material and Methods 

2.1. Animals 

Forty-eight male C57BL/6J mice (25–30 grams) were bred at the Department for Molecular Biomedical 

Research of Ghent University. Mice were individually housed and subjected to standard 12-h  

light-dark cycle periods. Mice were fed standard lab chow and water ad libitum. Mice adapted to the 

laboratory environment for 7 days prior to the start of the experiments. The study protocol was approved by 

the Committee on the Ethics of Animal Experiments of Ghent University (approval number EC2012-028). 

2.2. Experimental Protocol 

This experimental model, with an acute arginine-deficient state induced by intraperitoneal (i.p.) 

arginase injection, was developed to determine the preferential substrate, L-citrulline or L-arginine 

supplementation, on arginine availability, tissue NO production and microcirculation. The arginase 

concentration used in this study, 1000 IE/25 g, was based on previous experience in our group, resulting 

in a >60% reduction in plasma arginine concentrations [19], and on clinical studies in which plasma 

arginase activity during the steady-state phase of sickle cell disease caused a ~1.5-fold decrease in 

plasma arginine concentrations [4,20]. 

At 0 h, mice were injected intraperitoneally with sterile saline (NaCl 0.9%; 0.5 mL), L-citrulline  

(Cit; 37.5 mg; 0.2 mmol) or L-arginine (Arg; 37.5 mg; 0.2 mmol), with or without arginase in a separate 

syringe and on the contralateral site injected (Sigma, St. Louis, MO, USA, 40 IE/g protein, 0.1 mL). 

Five groups were studied: control (n = 8), arginase injection (n = 8), citrulline supplementation (n = 8), 

arginine supplementation (n = 8), citrulline + arginase (n = 8) and arginine + arginase (n = 8) (See Figure 1 

for the experimental setup). After the injection, food was withheld, but water was provided throughout  

the experimental phase. One hour after the i.p. injections, spin trap agents were administered i.p. and 

subcutaneously (s.c.) for tissue NO production measurements (n = 3 per group), as described below. 

Mice used for microcirculatory measurements received an equal amount of sterile saline. Simultaneously, 
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mice were premedicated with 0.01 mg/kg Temgesic® (Reckitt & Colman Products LTD., Kingston-Upon 

Hill, U.K.) s.c. 

 

Figure 1. Experimental setup of the acute arginase model. Mice received an intraperitoneal 

injection with sterile saline or arginase combined with L-citrulline or L-arginine at time zero 

(t = 0 h). After 1 h (t = 1 h), mice received either spin-trap agents to measure the nitric oxide 

(NO) production in vivo or a sterile saline injection as placebo treatment. After 1.5 h  

(t = 1.5 h), side stream dark-field (SDF) imaging was used to quantify the microcirculation in 

the jejunal villi or organs were harvested to determine the formed iron-diethyldithiocarbamate 

(DETC) complexes as a parameter for the NO production in vivo. At the end of the 

experiment, blood and tissue samples were harvested for amino acid determination. 

One and a half hours after the initial injection, anesthesia was induced with 4% isoflurane  

(Abbott Laboratories LTD, Maidenhead, U.K.). During the measurements of the tissue NO production 

and microcirculatory analysis in the jejunal mucosa with a side stream dark-field (SDF) imager, 

anesthesia was maintained with 2% isoflurane. All imaging experiments were done by an experienced 

investigator, who was blinded to the treatment allocation. Images were analyzed by 2 independent, 

experienced researchers, both blinded to the treatment. 

Throughout the experiment, body temperature was maintained at 37 °C, using an infrared heating 

lamp with a temperature controller connected to a rectal probe. At the end of the experiment, blood was 

sampled via cardiac puncture, after which the animals were euthanized by cervical dislocation. 

2.3. Amino Acid Analysis 

After deproteinization, plasma and tissue (jejunum, liver and kidney) amino acid concentrations were 

determined with a fully-automated liquid chromatography-mass spectrometry system (LC-MS, Thermoquest 

LTQ, Veenendaal, The Netherlands) as described before [17,21]. Jejunal, liver and kidney tissue were 

used to determine the role of the gut-liver-renal axis in an acute arginine-deficient state. To determine the 

arginine availability in plasma and tissue, the arginine availability index (AAI) ((arginine)/((ornithine) + 

(lysine))) was calculated. This index is based on the uptake in cells of arginine, ornithine and lysine by 

the y+ transporter system and provides an indication of the relative available arginine for metabolic 

pathways [22]. The arginine transporter y+ consists of four different types of cationic amino acid 

transporters (CATs); CAT-1, CAT-2a and CAT-2b, CAT-3 and CAT-4 [23,24]. Only CAT-1 and  
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CAT-2b have a high affinity for cationic amino acids, such as arginine and citrulline; therefore, the 

influence of CAT-2a, CAT-3 and CAT-4 is negligible in this study. CAT-1 is expressed in almost all 

adult cells during physiological conditions [25], whereas CAT-2b is only expressed after induction with 

cytokines or lipopolysaccharide (LPS) treatment in inflammatory cells [23,26], which was not present 

in this study. Figure 2 provides a schematic overview of the relevant metabolic pathways of arginine. 

 

Figure 2. Schematic overview of the relevant metabolic pathways of arginine. 

Abbreviations: NO, nitric oxide; NOS, nitric oxide synthase; ASS, argininosuccinate synthase; 

ASL, argininosuccinate lyase. 

2.4. In Vivo Tissue NO Measurements 

The in vivo NO production in jejunum, liver and kidney was determined in tissue samples of mice  

(n = 18) injected with spin-trap agents, as described previously [17]. Briefly, mice were injected s.c. in 

the scruff of the neck with a mixture of FeSO4·7H2O (37.5 mg/kg), sodium citrate (190 mg/kg) and i.p. 

with diethyldithiocarbamate (DETC, 500 mg/kg) 30 min prior to sacrifice [27]. NO is trapped with  

Fe2+-dithiocarbamate, an mono-nitrosyl iron complex (MNIC), and measured with electron spin 

resonance (ESR) spectroscopy, as described [17,27]. NO concentrations were calculated from the height 

of the three-line NO amplitude using Bruker WINEPR software [17,27]. 

2.5. Jejunal Microcirculation Measurements with SDF Imaging 

Microscopic visualization of the intestinal mucosal microcirculation in the jejunal villi with the  

SDF-imager (Microscan, Amsterdam, The Netherlands) [28,29] was described in detail [17] and chosen 

because the gut is easily accessible and a frequently affected end organ [30]. In brief, a small incision 

was made in the jejunum to visualize the jejunal villi. A specially-designed stand was used to stabilize 

the SDF-imager and to avoid pressure on the jejunal villi during the measurements. The microcirculation, 

determined as the total number of perfused vessels per villus, was analyzed using Automated  

Vascular Analysis software 3.0 (Microscan, Amsterdam, The Netherlands), adjusted according to  

De Backer et al. [31–33]. Furthermore, the average microvascular flow index (MFI), a semiquantitative 

assessment of the predominant type of flow in the villi, was determined in the four quadrants of the 

image (0 = absent, 1 = intermittent, with at least 50% of the time having no flow, 2 = sludging,  

3 = normal or 4 = hyperdynamic flow) [32]. All imaging experiments were performed by an experienced 

investigator, and images were analyzed by two independent, blinded, experienced researchers. 
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2.6. Statistical Analysis 

Statistical analysis of the data was performed using SPSS 19.0 (SPSS, Chicago, IL, USA). In  

the experiment, comparisons were made between control and arginase groups to test the effect of 

arginase treatment. The control group was also compared with the citrulline- and arginine-supplemented 

groups to determine the effect of L-citrulline or L-arginine supplementation during the control condition. 

Finally, the citrulline + arginase group and the arginine + arginase group were compared with the 

arginase group to test the effect of L-citrulline or L-arginine supplementation during an acute  

arginine-deficient state. In case of a Gaussian distribution, one-way ANOVA with post hoc Bonferroni 

correction between groups was used. A two-sided p < 0.05 was considered as statistically significant. 

Data are represented as the mean and standard error of the mean (SEM). 

3. Results 

3.1. Improved Plasma Amino Acid Concentrations after Citrulline Supplementation in  

Arginase-Treated Animals 

Arginase injection resulted in a <35% reduction of plasma arginine concentrations compared to 

control animals (p < 0.0001; Figure 3A; see Supplementary Table S1 for normalized values of all  

amino acids). As expected, both L-arginine and L-citrulline supplementation resulted in higher plasma 

arginine and citrulline concentrations during control conditions (Figure 3A,B). L-citrulline 

supplementation mediated a >4-fold significant increase in plasma arginine concentration in  

arginase-treated animals, whereas arginine supplementation was unable to mediate a significant increase 

in plasma arginine concentration in arginase-injected animals (Figure 3A). 

 

Figure 3. Cont.  
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Figure 3. Effect of L-arginine or L-citrulline supplementation on plasma amino acid 

concentrations in control and arginase treated mice. (A) Plasma arginine concentrations 

during basal and arginase-treated conditions with or without citrulline or arginine; (B) plasma 

citrulline concentration in all treated groups; (C) ornithine concentrations during basal and 

arginase-treated conditions; (D) lysine concentrations in plasma were measured with HPLC. 

Plasma concentrations are displayed as μmol/L. Significance: a p < 0.05 vs. control;  
b p < 0.05 vs. arginine; c p < 0.05 vs. arginine + arginase; d p < 0.05 vs. citrulline + arginase. 

In parallel to the decreased plasma arginine concentrations in arginase-treated animals, ornithine 

concentrations were significantly higher (Figure 3C), indicating the conversion of arginine to ornithine 

by the injected arginase. Both L-citrulline and L-arginine significantly increased ornithine concentrations 

in arginase-treated animals. Interestingly, citrulline concentrations were significantly lower in  

arginase-treated animals supplemented with L-arginine than in animals treated with arginase alone 

(Figure 3B). 

3.2. Depleted Tissue Amino Acid Concentrations Were Restored by Citrulline and  

Arginine Supplementation 

Next, we investigated the tissue amino acid concentrations in gut, liver and kidney (Figures 4–6). 

These organs play an important role in arginine and citrulline metabolism and are suggested to be 

involved in sickle cell-induced end organ failure. After arginase infusion, the intestinal arginine 

concentration was significantly lower (~55%) than in control mice (Figure 4A). L-arginine and  

L-citrulline supplementation resulted in ~5-fold and ~4-fold higher jejunal arginine concentrations, 

respectively, compared to mice infused with arginase alone (Figure 4A). Citrulline supplementation 

resulted in a significantly higher tissue citrulline concentration in the citrulline-treated and  

citrulline + arginase-treated mice (Figure 4B). Furthermore, the intestinal ornithine concentration was 

higher in arginase-treated than control mice, but also in L-citrulline- and L-arginine-supplemented mice 

than in control or arginase-treated mice (Figure 4C) 
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Figure 4. Effect of L-arginine or L-citrulline supplementation on jejunal tissue amino acid 

concentrations in control and arginase-treated mice. Jejunal tissue concentrations during basal 

and arginase-treated conditions of (A) arginine, (B) citrulline, (C) ornithine and (D) lysine were 

measured with High Performance Liquid Chromatography (HPLC). Tissue concentrations are 

displayed as nmol/g wet tissue). Significance: a p < 0.05 vs. control; b p < 0.05 vs. arginine;  
c p < 0.05 vs. arginine + arginase; d p < 0.05 vs. citrulline + arginase. 

In liver, arginase treatment resulted in a ~50% lower tissue arginine concentration than measured in 

control mice (Figure 5A). As was to be expected in view of its very high arginase content, liver arginine 

content is <10% of that in the gut. L-citrulline supplementation did not result in higher tissue arginine 

concentrations in the liver of control or arginase-treated mice (Figure 5A), although L-citrulline 

supplementation increased the liver citrulline concentration (Figure 5B). L-arginine supplementation resulted 

in comparable arginine concentrations in control animals, but in arginase-treated and arginine-supplemented 

mice, liver arginine concentrations were significantly lower than in mice that were treated with arginase 

only (Figure 5A). Interestingly, arginase treatment alone was not associated with increased ornithine 
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concentrations in liver tissue, although L-citrulline- and L-arginine-supplemented mice both had 

significantly higher ornithine concentrations in liver tissue (Figure 5C). 

 

Figure 5. Effect of L-arginine or L-citrulline supplementation on liver tissue amino acid 

concentrations in control and arginase-treated mice. Liver tissue concentrations during basal 

and arginase-treated conditions of (A) arginine, (B) citrulline, (C) ornithine and (D) lysine 

were measured with HPLC. Tissue concentrations are displayed as nmol/g wet tissue). 

Significance: a p < 0.05 vs. control; b p < 0.05 vs. arginine; c p < 0.05 vs. arginine + arginase; 

d p < 0.05 vs. citrulline + arginase. 

Comparable to the gut and liver, arginase infusion also significantly lowered renal arginine 

concentrations (Figure 6A) and increased ornithine levels (Figure 6C). L-arginine supplementation 

increased renal arginine concentrations, both with and without arginase treatment, compared to their 

respective control conditions (Figure 6A). L-citrulline treatment resulted in increased citrulline 

concentrations (Figure 6B) and a ~35-fold increase in arginine concentrations, irrespective of the 

presence of arginase (Figure 6A). Besides the enhanced arginine concentrations, L-arginine and L-citrulline 
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supplementation in arginase-treated mice resulted in significantly higher renal ornithine concentrations; 

~25-fold in the arginine + arginase group and ~8-fold in the citrulline + arginase group (Figure 6C).  

L-arginine supplementation did not result in higher intracellular citrulline concentrations in the kidney. 

 

Figure 6. Effect of L-arginine or L-citrulline supplementation on renal tissue amino acid 

concentrations in control and arginase-treated mice. Renal tissue concentrations during basal 

and arginase-treated conditions of (A) arginine, (B) citrulline, (C) ornithine and (D) lysine 

were measured with HPLC. Tissue concentrations are displayed as nmol/g wet tissue). 

Significance: a p < 0.05 vs. control; b p < 0.05 vs. arginine; c p < 0.05 vs. arginine + arginase; 

d p < 0.05 vs. citrulline + arginase. 

Together with arginine and ornithine, lysine is one of the major basic amino acids in plasma. Since it 

is an essential amino acid, changes in concentration only reflect changes in transport and degradation. 

The lysine concentration in plasma was significantly higher in arginase-infused mice than in control, 

arginase + arginine- and arginase + citrulline-supplemented mice (Figure 3D). L-citrulline-supplemented 

control mice also exhibited a significantly higher plasma lysine concentration than control mice (Figure 2D). 
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The lysine concentrations in jejunal tissue increased ~3-fold in arginine- and citrulline-supplemented 

mice compared to the control (Figure 4D). Lysine increased ~2-fold in arginase-infused mice compared 

to the control. L-arginine or L-citrulline supplementation in arginase-infused mice resulted in a ~6.5-fold 

and ~2.5-fold increase in lysine concentration, respectively. Lysine concentration in liver tissue was only 

significantly enhanced in the arginine-supplemented group compared to the control (Figure 5D). The 

renal lysine concentration increased ~3-fold in the L-citrulline supplementation group compared to the 

control (Figure 6D). In contrast, arginine supplementation during control conditions resulted in a 

significantly decreased lysine concentration in renal tissue compared to control treated animals.  

L-arginine or L-citrulline supplementation in arginase-infused mice resulted in a ~2.5-fold and ~3.5-fold 

increased lysine concentration, respectively, compared to arginase-treated mice alone (Figure 6D). 

3.3. Arginine Availability in Plasma and Tissues of Arginase-Treated Animals 

The arginine availability index (AAI) in plasma and tissue ((arginine)/((ornithine) + (lysine))) 

assumes that the cationic amino acid arginine is transported in and out of cells in exchange for ornithine 

or lysine [22]. The AAI declined ~8-fold in plasma of arginase-infused and arginase + arginine-supplemented 

mice and ~4-fold in arginase + citrulline-supplemented mice (Figure 7A). The effects in tissues were 

less dramatic and had a clear sequence: kidney and jejunum were affected and liver not or even improved. 

In jejunal tissue, the AAI was significantly reduced in arginase-infused mice compared to the control, 

which was not enhanced by L-arginine supplementation (Figure 7B). In line with this, L-citrulline 

supplementation in arginase-infused mice did not result in an enhanced AAI in jejunal tissue of these 

mice compared to arginase-treated mice alone (Figure 7B). Liver arginine availability was low in all 

groups, as expected by the high arginase content in liver tissue, and was significantly lowered in the  

L-arginine and L-citrulline supplementation during control conditions (Figure 7C). L-arginine 

supplementation resulted in an increased AAI in renal tissue during control conditions (Figure 7D). 

Arginase infusion resulted in a significant decreased AAI in renal tissue compared to control mice 

(Figure 7D). This decreased AAI was even significantly more decreased by L-arginine supplementation 

(Figure 7D). In contrast, L-citrulline supplementation resulted in higher AAI in renal tissue in both control 

and arginase-treated mice (Figure 7D). 

3.4. Impaired Tissue NO Production during Acute Arginine Deficiency 

In line with the decreased arginine availability, the intestinal NO production decreased after arginase 

infusion (from 6.3 ± 0.2 to 3.0 ± 0.6 pmol MNIC/mg jejunal tissue per 30 min, p < 0.001; Figure 8A).  

L-citrulline supplementation in arginase-treated animals resulted in significantly higher jejunal NO 

production (p < 0.05; Figure 8A). In contrast, arginine supplementation in arginase-treated animals did 

not result in higher NO production (p = 0.2; Figure 8A). 
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Figure 7. Plasma and tissue arginine availability in control and arginase-treated animals with 

L-arginine or L-citrulline supplementation. Arginine arginine availability index (AAI; 

(arginine)/((lysine)+(ornithine))) measured in plasma (A), jejunal tissue (B), liver (C) and 

renal tissue (D) of control and arginase-treated animals with or without supplemented  

L-arginine or L-citrulline. Significance: a p < 0.05 vs. control; b p < 0.05 vs. arginine;  
c p < 0.05 vs. arginine + arginase; d p < 0.05 vs. citrulline + arginase. 

 

Figure 8. Cont. 
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Figure 8. Tissue NO production in control and arginase-treated animals with L-arginine or 

L-citrulline supplementation. (A) The expected arginase-induced decrease in jejunal NO 

production, determined as pmol mono-nitrosyl iron complex (MNIC)/mg wet tissue, was not 

present in the arginase + L-citrulline-treated group, whereas in the L-arginine-treated group, 

the NO production was not enhanced. (B) L-citrulline and L-arginine supplementation both 

resulted in an enhanced NO production in the liver of arginase-treated animals. (C) Arginase 

infusion did not decrease the renal NO production compared to control treated animals.  

L-arginine supplementation significantly increased renal NO concentration in  

arginase-treated animals, while L-citrulline only tended to increase the NO levels. Significance: 
a p < 0.05 vs. control; b p < 0.05 vs. arginine; c p < 0.05 vs. arginine + arginase; d p < 0.05 vs.  

citrulline + arginase. 

Arginase injection also resulted in a significantly lower NO production in liver (from 7.8 ± 2.1 to  

2.2 ± 0.9 pmol MNIC/mg tissue per 30 min, p < 0.05, n = 3; Figure 8B). L-citrulline and L-arginine 

supplementation in arginase-treated mice resulted in a significantly higher liver NO production. This 

NO concentration in the citrulline + arginase group was comparable to citrulline-treated control animals 

(Figure 8B; not significant, n = 3). 

Arginase injection did not result in decreased renal NO production (Figure 8C). Interestingly, only  

L-arginine supplementation could significantly increase renal NO production in arginase-treated animals, 

while L-citrulline only tended to increase the NO production. In addition, during basal conditions, the 

NO production in the kidney was significantly higher in both L-citrulline and L-arginine-supplemented 

mice than control mice (Figure 8C). 

3.5. Citrulline Supplementation in Arginase-Treated Animals Restored Jejunal Microcirculation 

To determine the effect of arginase injection on the microcirculation in one of the end organs,  

the microcirculation in the jejunal villi of arginase-treated mice was measured with the SDF-imager. 

Arginase infusion resulted in an impaired microcirculation, as deduced from a significantly lower total 

number of perfused vessels than in control mice (p < 0.05; Figures 9A and 10A,B). L-arginine 
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supplementation in arginase-treated mice did not result in improvement of the microcirculation, 

indicated by a similar total number of perfused vessels or number of perfused vessels per villus  

(Figures 9A,B and 10D). On the contrary, L-citrulline supplementation in arginase-treated mice was 

associated with a ~85% higher total number of perfused vessels (Figures 9A,B and 10F). In addition, the 

total number of perfused vessels in citrulline + arginase-treated mice did not differ from control mice 

supplemented with L-citrulline (Figure 9A). 

 

Figure 9. Microcirculatory measurements with side stream dark-field (SDF)-imaging in the 

jejunal villi. (A) The total number of perfused vessels measured with SDF-imaging in the 

jejunal villi was significantly decreased in arginase-treated mice compared to the control and 

after L-citrulline supplementation in arginase-treated mice. (B) The number of perfused 

vessels per villus was in line with the total number of perfused vessels, as arginase-treated 

mice exhibited significantly less perfused vessels per villus compared to control mice.  

L-citrulline supplementation in arginase-treated mice resulted in an increased number of 

perfused vessels per villus, whereas L-arginine supplementation did not result in an increased 

in the number of perfused vessels per villus. (C) The microvascular flow index (MFI) was 

significantly reduced in the arginase- and arginase + arginine-supplemented animals 

compared to the control and citrulline-treated animals during basal and arginase + citrulline 

treatment. Significance: a p < 0.05 vs. control; b p < 0.05 vs. arginine; c p < 0.05 vs. arginine 

+ arginase; d p < 0.05 vs. citrulline + arginase. 
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MFI, the determination of the predominant type of flow in the villi in the four quadrants of the image, 

was significantly lower in arginase-treated than control mice (1.7 ± 0.1 vs. 2.9 ± 0.1, p < 0.001;  

Figure 5C). In addition, L-arginine supplementation did not result in a higher MFI in arginase-treated 

mice, while arginase-infused L-citrulline supplemented animals had a significantly higher MFI compared 

to arginase-infused animals alone (2.8 ± 0.1 vs. 1.7 ± 0.1, p < 0.001). 

 

Figure 10. Representative live images of the microcirculatory measurements in jejunal villi 

with side stream dark-field (SDF)-imaging of control and arginase treated animals with or 

without L-citrulline or L-arginine supplementation. (A) Representative image of the jejunal 

microcirculation in a control mouse. (B) Representative image of an arginase-treated mouse, 

with a decreased number of perfused vessels per villus. (C) Representative image of the 

jejunal microcirculation in an L-arginine-treated mouse, which shows a comparable perfusion 

pattern as the control mouse. (D) Representative image of an arginase + L-arginine-treated 

mouse, which shows no beneficial effect of L-arginine supplementation on the perfusion.  

(E) Representative live image of an L-citrulline-treated mouse, which also shows a 

comparable perfusion pattern as the control and L-arginine-treated mouse. (F) Representative 

image of an arginase + L-citrulline-treated mouse, which shows more perfused vessels per 

villus compared to arginase and arginase + L-arginine-treated animals. 
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4. Discussion 

To our knowledge, this is the first study comparing the acute effects of L-citrulline and L-arginine 

supplementation on tissue and systemic arginine availability, NO production and microcirculation in an 

acute arginine-deficient state. The present study provides new evidence that L-citrulline, but not  

L-arginine, supplementation improves the microcirculation in an end organ during conditions with 

arginase-induced acute arginine deficiency by increasing NO production. Our findings may have 

important consequences for further studies that aim to improve acute dysregulation of arginine 

metabolism, such as in sickle cell disease [34]. 

Previous studies have shown that increasing plasma arginine concentrations by supplementing L-arginine 

resulted in an increased arteriole diameter in the cremaster muscle of transgenic sickle mice [11,35].  

In contrast, arginine supplementation did not result in an improved microcirculation or NO production 

in our previously developed septic model with a prolonged increase in arginase activity and accompanying 

arginine deficiency [17]. In agreement with our earlier data from the septic model, L-arginine 

supplementation in this study did not increase local arginine availability, NO production nor the 

intestinal microcirculation during acutely-enhanced plasma arginase activity. 

In addition to sickle cell disease, conditions, such as endotoxemia, hemolysis, sepsis, asthma and  

liver diseases, are also characterized by an increased plasma arginase activity [2,8,22,36–40]. In  

these examples, arginase-induced arginine deficiency also resulted in decreased intracellular arginine 

availability for NO production due to a CAT-mediated exchange of intracellular arginine for 

extracellular high ornithine concentrations, resulting from the high plasma arginase activity [17,41,42]. 

L-citrulline was suggested as an alternative for enhancing intracellular arginine and NO concentrations, 

since citrulline is capable of bypassing the arginase activity in the gastro-intestinal tract [43,44]. This bypass 

effect was also observed in the present study, as the supplemented L-citrulline resulted in a >2-fold increase 

in plasma arginine concentrations during this acutely-enhanced arginase activity. The necessary 

intracellular or renal conversion of citrulline into arginine may be the underlying beneficial feature of 

citrulline supplementation versus arginine, as this allows an increase in arginine plasma and tissue 

concentrations during conditions with enhanced arginine catabolism. Indeed, L-citrulline supplementation 

also enhanced the ornithine concentrations during this study, which may be the result of the conversion 

of the circulating arginine derived from citrulline or the diminished conversion of ornithine into  

citrulline [45,46]. On the contrary, the supplemented L-arginine was converted into ornithine as observed 

in the increased plasma and tissue ornithine concentrations during the basal and experimental condition 

with enhanced arginase activity. Furthermore, the presence of argininosuccinate synthase (ASS) in 

endothelial cells allows the cells to use exogenous L-citrulline to increase intracellular arginine for NO 

production [47–49]. Thus, citrulline can act as a direct vasodilator in the microcirculation [50], which 

may contribute to the beneficial effects of L-citrulline supplementation on the microcirculation observed 

in this study. Another benefit of citrulline supplementation is the incomplete hepatic clearance  

of citrulline, resulting in enhanced citrulline availability from supplementation or endogenous synthesis in 

the gut, which can be used to enhance de novo arginine synthesis in the kidney [51,52] or in endothelial cells. 

Interestingly, citrulline supplementation resulted in an increased citrulline concentration in liver tissue, 

in agreement with a low affinity of the uptake of citrulline in liver. However, the intracellular citrulline 
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concentrations in liver tissue were not as high as in renal tissue, which may be explained by an enhanced 

conversion of citrulline into ornithine and urea as part of the urea cycle. 

In one non-controlled pilot study, citrulline enhanced arginine availability and relieved exertional 

fatigue and dyspnea in sickle cell disease [16]. Thus far, the influence of L-citrulline supplementation on 

the microcirculation in sickle cell disease remains to be investigated. We previously demonstrated that 

L-citrulline supplementation increased arginine availability and NO production during a prolonged 

arginine-deficient state, partly caused by an enhanced arginase activity [17]. In the present study, with 

an acute enhanced arginase activity, comparable results were observed with L-citrulline supplementation.  

As observed in this study, citrulline supplementation enhanced the arginine concentration in the kidney 

~25-fold compared to control conditions, resulting in a significantly higher circulating arginine 

concentration than in arginine-supplemented animals. This positive enhancement of the plasma arginine 

concentration was also present in the arginase-treated group, which strengthens our hypothesis that citrulline 

may be the preferred substrate to increase the arginine availability in arginine-deficient conditions.  

In addition, gastrointestinal complaints after the intake of large L-arginine amounts are not observed  

in studies with large oral L-citrulline amounts [43,53–55]. Furthermore, in humans, L-citrulline 

supplementation is a good therapeutic strategy to combat splanchnic hypoperfusion-induced intestinal 

compromise in strenuous exercise, as this resulted in an increased number of perfused small sublingual 

vessels and prevention of splanchnic hypoperfusion and gastrointestinal damage [56]. 

Additional issues remain to be investigated. The microcirculatory measurements were conducted in 

the jejunal villi, but not in the liver or renal tissue of these animals, as a limitation of the SDF-imager in 

this model. The SDF-imager is applied on tissue surfaces, especially mucosa, and measures perfused 

vessels, as the 530-nm light is absorbed by the hemoglobin in red blood cells [57]. Measurements of the 

microcirculation in liver and renal tissue with the SDF-imager on the external surface [58,59] is less 

suitable in this study, as these tissues exhibit a large amount of red blood cells, which prevents the 

accurate measurement of the microcirculation in the tissues relevant for our study. To visualize the 

microcirculation in renal tissue [59], the retroperitoneal cavity has to be opened and part of the renal 

capsule removed, to visualize the renal tissue responsible for the arginine de novo synthesis. This not 

only results in tissue damage, leading to free-hemoglobin, but also a prolonged surgical procedure, which 

interferes with the fixed time period of the experiment. As previously observed in conditions with an 

acute increase in arginase, the gut microcirculation is the first organ system to derange, after which other 

microcirculatory beds are affected [33,60–62], which led us to the present experimental protocol, which 

only investigated the microcirculation in the jejunal villi. Therefore, due to technical limitations in this 

study, the influence of L-citrulline supplementation during an acute arginase-induced arginine deficiency 

in other vascular beds still needs to be examined. Another limitation of this study is that the effects of 

an acute arginase-induced arginine deficiency were not investigated in a mouse model of sickle cell 

disease. Transgenic mouse models to investigate sickle cell disease use mice exhibiting mild and severe 

pathology with different expression patterns of beta(S)-globin or hemoglobin-S, such as NY1DD mice 

and Berkeley (BERK) mice [10,11]. Future studies should determine the role of arginase in the acute 

hemolytic crises in these mice and the beneficial effects of L-citrulline supplementation. 
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5. Conclusions 

In conclusion, our study showed that L-citrulline supplementation resulted in improved 

microcirculation during an arginase-induced acute arginine-deficiency state by increasing arginine 

availability and NO production, while these effects were not achieved with L-arginine supplementation. 
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